These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. [Formation of natural silk and progress in artificial spinning]. Bai X; Yuan W Sheng Wu Gong Cheng Xue Bao; 2020 Sep; 36(9):1767-1778. PubMed ID: 33164455 [TBL] [Abstract][Full Text] [Related]
23. Characteristics of silk fiber with and without sericin component: a comparison between Bombyx mori and Philosamia ricini silks. Prasong S; Yaowalak S; Wilaiwan S Pak J Biol Sci; 2009 Jun; 12(11):872-6. PubMed ID: 19803122 [TBL] [Abstract][Full Text] [Related]
24. Self-Assembly of Bombyx mori Silk Fibroin. Kong N Methods Mol Biol; 2021; 2347():69-82. PubMed ID: 34472056 [TBL] [Abstract][Full Text] [Related]
25. CRISPR/Cas9 Initiated Transgenic Silkworms as a Natural Spinner of Spider Silk. Zhang X; Xia L; Day BA; Harris TI; Oliveira P; Knittel C; Licon AL; Gong C; Dion G; Lewis RV; Jones JA Biomacromolecules; 2019 Jun; 20(6):2252-2264. PubMed ID: 31059233 [TBL] [Abstract][Full Text] [Related]
26. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Ha SW; Tonelli AE; Hudson SM Biomacromolecules; 2005; 6(3):1722-31. PubMed ID: 15877399 [TBL] [Abstract][Full Text] [Related]
27. Tough silk fibers prepared in air using a biomimetic microfluidic chip. Luo J; Zhang L; Peng Q; Sun M; Zhang Y; Shao H; Hu X Int J Biol Macromol; 2014 May; 66():319-24. PubMed ID: 24613677 [TBL] [Abstract][Full Text] [Related]
28. Aggregation State of Residual Moseti KO; Yoshioka T; Kameda T; Nakazawa Y Molecules; 2019 Oct; 24(20):. PubMed ID: 31627317 [TBL] [Abstract][Full Text] [Related]
29. Mechanical behaviour and formation process of silkworm silk gut. Cenis JL; Madurga R; Aznar-Cervantes SD; Lozano-Pérez AA; Marí-Buyé N; Meseguer-Olmo L; Plaza GR; Guinea GV; Elices M; Del Pozo F; Pérez-Rigueiro J Soft Matter; 2015 Dec; 11(46):8981-91. PubMed ID: 26403149 [TBL] [Abstract][Full Text] [Related]
30. Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system. Zhao C; Yao J; Masuda H; Kishore R; Asakura T Biopolymers; 2003 Jun; 69(2):253-9. PubMed ID: 12767126 [TBL] [Abstract][Full Text] [Related]
31. Characterization of Bombyx mori and Antheraea pernyi silk fibroins and their blends as potential biomaterials. Suzuki S; Chirila TV; Edwards GA Prog Biomater; 2016 Dec; 5(3-4):193-198. PubMed ID: 27995586 [TBL] [Abstract][Full Text] [Related]
32. In vitro studies on the structure and properties of silk fibroin aqueous solutions in silkworm. Jin Y; Hang Y; Luo J; Zhang Y; Shao H; Hu X Int J Biol Macromol; 2013 Nov; 62():162-6. PubMed ID: 23994738 [TBL] [Abstract][Full Text] [Related]
33. Study on the Effect of Stretching on the Strength of Natural Silk Based on Different Feeding Methods. Qu J; Feng P; Zhu Q; Ren Y; Li B ACS Biomater Sci Eng; 2022 Jan; 8(1):100-108. PubMed ID: 34918508 [TBL] [Abstract][Full Text] [Related]
34. Enhancing Mechanical Properties of Silk Fibroin Hydrogel through Restricting the Growth of β-Sheet Domains. Su D; Yao M; Liu J; Zhong Y; Chen X; Shao Z ACS Appl Mater Interfaces; 2017 May; 9(20):17489-17498. PubMed ID: 28470062 [TBL] [Abstract][Full Text] [Related]
35. Antheraea pernyi silk fiber: a potential resource for artificially biospinning spider dragline silk. Zhang Y; Yang H; Shao H; Hu X J Biomed Biotechnol; 2010; 2010():683962. PubMed ID: 20454537 [TBL] [Abstract][Full Text] [Related]
36. Dry-Spun Silk Produces Native-Like Fibroin Solutions. Boulet-Audet M; Holland C; Gheysens T; Vollrath F Biomacromolecules; 2016 Oct; 17(10):3198-3204. PubMed ID: 27526078 [TBL] [Abstract][Full Text] [Related]
37. Spider (Linothele megatheloides) and silkworm (Bombyx mori) silks: Comparative physical and biological evaluation. Yang Y; Greco G; Maniglio D; Mazzolai B; Migliaresi C; Pugno N; Motta A Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110197. PubMed ID: 31761195 [TBL] [Abstract][Full Text] [Related]
38. Ca2+ and endoplasmic reticulum Ca2+-ATPase regulate the formation of silk fibers with favorable mechanical properties. Wang X; Li Y; Xie K; Yi Q; Chen Q; Wang X; Shen H; Xia Q; Zhao P J Insect Physiol; 2015 Feb; 73():53-9. PubMed ID: 25602367 [TBL] [Abstract][Full Text] [Related]
39. Modifying the Mechanical Properties of Silk Fiber by Genetically Disrupting the Ionic Environment for Silk Formation. Wang X; Zhao P; Li Y; Yi Q; Ma S; Xie K; Chen H; Xia Q Biomacromolecules; 2015 Oct; 16(10):3119-25. PubMed ID: 26302212 [TBL] [Abstract][Full Text] [Related]
40. Fabrication and characterization of biomaterial film from gland silk of muga and eri silkworms. Dutta S; Talukdar B; Bharali R; Rajkhowa R; Devi D Biopolymers; 2013 May; 99(5):326-33. PubMed ID: 23426575 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]