These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 35407332)

  • 21. Effects of low-level engineered nanoparticles on the quorum sensing of Pseudomonas aeruginosa PAO1.
    Li N; Wang L; Yan H; Wang M; Shen D; Yin J; Shentu J
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):7049-7058. PubMed ID: 29273994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment?
    Scown TM; van Aerle R; Tyler CR
    Crit Rev Toxicol; 2010 Aug; 40(7):653-70. PubMed ID: 20662713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytoremediation of engineered nanoparticles using aquatic plants: Mechanisms and practical feasibility.
    Ebrahimbabaie P; Meeinkuirt W; Pichtel J
    J Environ Sci (China); 2020 Jul; 93():151-163. PubMed ID: 32446451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy.
    Ma DD; Yang WX
    Oncotarget; 2016 Jun; 7(26):40882-40903. PubMed ID: 27056889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium.
    Kendall M; Hodges NJ; Whitwell H; Tyrrell J; Cangul H
    Philos Trans R Soc Lond B Biol Sci; 2015 Feb; 370(1661):20140100. PubMed ID: 25533102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems.
    Luo P; Roca A; Tiede K; Privett K; Jiang J; Pinkstone J; Ma G; Veinot J; Boxall A
    J Environ Sci (China); 2018 Feb; 64():62-71. PubMed ID: 29478662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomic evaluation of nanotoxicity in aquatic organisms: A review.
    Tubatsi G; Kebaabetswe LP; Musee N
    Proteomics; 2022 Nov; 22(21):e2200008. PubMed ID: 36107811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.
    Gray EP; Coleman JG; Bednar AJ; Kennedy AJ; Ranville JF; Higgins CP
    Environ Sci Technol; 2013 Dec; 47(24):14315-23. PubMed ID: 24218983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material.
    Adrian YF; Schneidewind U; Bradford SA; Simunek J; Fernandez-Steeger TM; Azzam R
    Environ Pollut; 2018 May; 236():195-207. PubMed ID: 29414340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualization and analysis of nanoparticle transport and ageing in reactive porous media.
    Naftaly A; Edery Y; Dror I; Berkowitz B
    J Hazard Mater; 2015 Dec; 299():513-9. PubMed ID: 26252995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineered nanoparticle-induced epigenetic changes: An important consideration in nanomedicine.
    Zhang W; Liu S; Han D; He Z
    Acta Biomater; 2020 Nov; 117():93-107. PubMed ID: 32980543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects.
    Yu S; Liu J; Yin Y; Shen M
    J Environ Sci (China); 2018 Jan; 63():198-217. PubMed ID: 29406103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro.
    Vevers WF; Jha AN
    Ecotoxicology; 2008 Jul; 17(5):410-20. PubMed ID: 18491228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-interactions and risks of engineered nanoparticles.
    Prajitha N; Athira SS; Mohanan PV
    Environ Res; 2019 May; 172():98-108. PubMed ID: 30782540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Paclitaxel-loaded expansile nanoparticles enhance chemotherapeutic drug delivery in mesothelioma 3-dimensional multicellular spheroids.
    Lei H; Hofferberth SC; Liu R; Colby A; Tevis KM; Catalano P; Grinstaff MW; Colson YL
    J Thorac Cardiovasc Surg; 2015 May; 149(5):1417-24; discussion 1424-25.e1. PubMed ID: 25841659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products.
    Mitrano DM; Motellier S; Clavaguera S; Nowack B
    Environ Int; 2015 Apr; 77():132-47. PubMed ID: 25705000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles.
    Tiede K; Hassellöv M; Breitbarth E; Chaudhry Q; Boxall AB
    J Chromatogr A; 2009 Jan; 1216(3):503-9. PubMed ID: 18805541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Langendorff heart: a model system to study cardiovascular effects of engineered nanoparticles.
    Stampfl A; Maier M; Radykewicz R; Reitmeir P; Göttlicher M; Niessner R
    ACS Nano; 2011 Jul; 5(7):5345-53. PubMed ID: 21630684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can the properties of engineered nanoparticles be indicative of their functions and effects in plants?
    Liu Y; Pan B; Li H; Lang D; Zhao Q; Zhang D; Wu M; Steinberg CEW; Xing B
    Ecotoxicol Environ Saf; 2020 Dec; 205():111128. PubMed ID: 32827963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.
    Sani-Kast N; Scheringer M; Slomberg D; Labille J; Praetorius A; Ollivier P; Hungerbühler K
    Sci Total Environ; 2015 Dec; 535():150-9. PubMed ID: 25636351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.