These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 35407348)
1. Nano-Composite Filler of Heteropolyacid-Imidazole Modified Mesoporous Silica for High Temperature PEMFC at Low Humidity. Lee G; Kim J; Park J; Jeon Y; Park J; Shul YG Nanomaterials (Basel); 2022 Apr; 12(7):. PubMed ID: 35407348 [TBL] [Abstract][Full Text] [Related]
2. Proton Transport in Aluminum-Substituted Mesoporous Silica Channel-Embedded High-Temperature Anhydrous Proton-Exchange Membrane Fuel Cells. Seo K; Nam KH; Han H Sci Rep; 2020 Jun; 10(1):10352. PubMed ID: 32587342 [TBL] [Abstract][Full Text] [Related]
3. Mesoporous Silica Nanospheres Impregnated with 12-Phosphotungstic Acid as Inorganic Filler of Nafion Membrane for Proton Exchange Membrane Fuel Cells. Zhang X; Ai T; Huang Y; Zhao Y; Han L; Lu J J Nanosci Nanotechnol; 2019 Jan; 19(1):98-104. PubMed ID: 30327007 [TBL] [Abstract][Full Text] [Related]
4. Ceria Stabilized by Titanium Carbide as a Sustainable Filler in the Nafion Matrix Improves the Mechanical Integrity, Electrochemical Durability, and Hydrogen Impermeability of Proton-Exchange Membrane Fuel Cells: Effects of the Filler Content. Vinothkannan M; Ramakrishnan S; Kim AR; Lee HK; Yoo DJ ACS Appl Mater Interfaces; 2020 Feb; 12(5):5704-5716. PubMed ID: 31917548 [TBL] [Abstract][Full Text] [Related]
5. Enhancing Physicochemical Properties and Single Cell Performance of Sulfonated Poly(arylene ether) (SPAE) Membrane by Incorporation of Phosphotungstic Acid and Graphene Oxide: A Potential Electrolyte for Proton Exchange Membrane Fuel Cells. Ryu SK; Kim AR; Vinothkannan M; Lee KH; Chu JY; Yoo DJ Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301122 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of Keggin and Preyssler tungsten heteropolyacids on various functionalized silica. Tarlani A; Abedini M; Nemati A; Khabaz M; Amini MM J Colloid Interface Sci; 2006 Nov; 303(1):32-8. PubMed ID: 16901499 [TBL] [Abstract][Full Text] [Related]
7. Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity. Xu K; Chanthad C; Gadinski MR; Hickner MA; Wang Q ACS Appl Mater Interfaces; 2009 Nov; 1(11):2573-9. PubMed ID: 20356129 [TBL] [Abstract][Full Text] [Related]
8. Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications. Hwang S; Lee H; Jeong YG; Choi C; Hwang I; Song S; Nam SY; Lee JH; Kim K Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430726 [TBL] [Abstract][Full Text] [Related]
9. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells. Zhang J; Liu J; Lu S; Zhu H; Aili D; De Marco R; Xiang Y; Forsyth M; Li Q; Jiang SP ACS Appl Mater Interfaces; 2017 Sep; 9(37):31922-31930. PubMed ID: 28857542 [TBL] [Abstract][Full Text] [Related]
12. Bi-Functional Composting the Sulfonic Acid Based Proton Exchange Membrane for High Temperature Fuel Cell Application. Xu G; Zou J; Guo Z; Li J; Ma L; Li Y; Cai W Polymers (Basel); 2020 Apr; 12(5):. PubMed ID: 32357433 [TBL] [Abstract][Full Text] [Related]
13. Facile synthesis of porous metal oxide nanotubes and modified nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity. Ketpang K; Lee K; Shanmugam S ACS Appl Mater Interfaces; 2014 Oct; 6(19):16734-44. PubMed ID: 25203667 [TBL] [Abstract][Full Text] [Related]
14. All-Perfluorosulfonated-Ionomer Composite Membranes Containing Blow-Spun Fibers: Effect of a Thin Fiber Framework on Proton Conductivity and Mechanical Properties. Onuki S; Kawai Y; Masunaga H; Ohta N; Kikuchi R; Ashizawa M; Nabae Y; Matsumoto H ACS Appl Mater Interfaces; 2024 Feb; 16(8):10682-10691. PubMed ID: 38381136 [TBL] [Abstract][Full Text] [Related]
15. Encapsulation of Imidazole into Ce-Modified Mesoporous KIT-6 for High Anhydrous Proton Conductivity. Tabero A; Jankowska A; Ostrowski A; Janiszewska E; Kowalska-Kuś J; Held A; Kowalak S Molecules; 2024 Jul; 29(13):. PubMed ID: 38999192 [TBL] [Abstract][Full Text] [Related]
16. Nano-porous thermally sintered nano silica as novel fillers for dental composites. Atai M; Pahlavan A; Moin N Dent Mater; 2012 Feb; 28(2):133-45. PubMed ID: 22137937 [TBL] [Abstract][Full Text] [Related]
17. Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes. Yamada M; Honma I J Phys Chem B; 2006 Oct; 110(41):20486-90. PubMed ID: 17034234 [TBL] [Abstract][Full Text] [Related]
18. Proton-conducting glass electrolyte. Uma T; Nogami M Anal Chem; 2008 Jan; 80(2):506-8. PubMed ID: 18081259 [TBL] [Abstract][Full Text] [Related]
19. Facilitating Proton Transport in Nafion-Based Membranes at Low Humidity by Incorporating Multifunctional Graphene Oxide Nanosheets. He X; He G; Zhao A; Wang F; Mao X; Yin Y; Cao L; Zhang B; Wu H; Jiang Z ACS Appl Mater Interfaces; 2017 Aug; 9(33):27676-27687. PubMed ID: 28766334 [TBL] [Abstract][Full Text] [Related]
20. Promising aquivion composite membranes based on fluoroalkyl zirconium phosphate for fuel cell applications. Donnadio A; Pica M; Subianto S; Jones DJ; Cojocaru P; Casciola M ChemSusChem; 2014 Aug; 7(8):2176-84. PubMed ID: 24975037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]