These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35407765)

  • 1. Level-Set Modeling of Grain Growth in 316L Stainless Steel under Different Assumptions Regarding Grain Boundary Properties.
    Murgas B; Flipon B; Bozzolo N; Bernacki M
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Study and Limits of Different Level-Set Formulations for the Modeling of Anisotropic Grain Growth.
    Murgas B; Florez S; Bozzolo N; Fausty J; Bernacki M
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional geometrical and topological characteristics of grains in conventional and grain boundary engineered 316L stainless steel.
    Liu T; Xia S; Zhou B; Bai Q; Rohrer GS
    Micron; 2018 Jun; 109():58-70. PubMed ID: 29665457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel.
    Cizek P; Whiteman JA; Rainforth WM; Beynon JH
    J Microsc; 2004 Mar; 213(3):285-95. PubMed ID: 15009696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bending Fatigue Behavior of 316L Stainless Steel up to Very High Cycle Fatigue Regime.
    Hu Y; Chen Y; He C; Liu Y; Wang Q; Wang C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Grain Boundary Network and Improvement of Intergranular Cracking Resistance in 316L Stainless Steel after Grain Boundary Engineering.
    Liu T; Xia S; Bai Q; Zhou B; Lu Y; Shoji T
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30642063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 2D Front-Tracking Lagrangian Model for the Modeling of Anisotropic Grain Growth.
    Florez S; Fausty J; Alvarado K; Murgas B; Bernacki M
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the Hydrogen Redistribution at the Grain Boundary of Misoriented Bicrystals in Austenite Stainless Steel.
    Yang F; Yan T; Zhang W; Zhang H; Zhao L
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description.
    Lhuillier PE; Chassignole B; Oudaa M; Kerhervé SO; Rupin F; Fouquet T
    Ultrasonics; 2017 Jul; 78():40-50. PubMed ID: 28324775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base Plate Preheating Effect on Microstructure of 316L Stainless Steel Single Track Deposition by Directed Energy Deposition.
    Kiran A; Koukolíková M; Vavřík J; Urbánek M; Džugan J
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure Evolution of 316L Steel Prepared with the Use of Additive and Conventional Methods and Subjected to Dynamic Loads: A Comparative Study.
    Ziętala M; Durejko T; Panowicz R; Konarzewski M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33142708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between Cellular Structure Morphology and Anisotropic Yield in Additively Manufactured Stainless Steel 316L.
    Kim DW; Han SB; Lee YS; Park DY; Lee HJ; Park SH; Song H
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delineating the Ultra-Low Misorientation between the Dislocation Cellular Structures in Additively Manufactured 316L Stainless Steel.
    Sun F; Adachi Y; Sato K; Ishimoto T; Nakano T; Koizumi Y
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Grain Size in 316L Stainless Steel Using the Attenuation of Rayleigh Wave Measured by Air-Coupled Transducer.
    Wang M; Bu Y; Dai Z; Zeng S
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An assessment of ultra fine grained 316L stainless steel for implant applications.
    Muley SV; Vidvans AN; Chaudhari GP; Udainiya S
    Acta Biomater; 2016 Jan; 30():408-419. PubMed ID: 26518104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of Grain Interfaces in Annealed Duplex Stainless Steel after Parallel Cross Rolling and Direct Rolling.
    Wang M; Li H; Tian Y; Guo H; Fang X; Guo Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29772723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining Grain Boundary Position and Geometry from EBSD Data: Limits of Accuracy.
    Fullwood DT; Sanderson S; Baird S; Christensen J; Homer ER; Johnson OK
    Microsc Microanal; 2022 Feb; 28(1):96-108. PubMed ID: 35177139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EBSD analysis of spark plasma sintered SS316-B
    Baranidharan K; Thirumalai Kumaran S; Uthayakumar M; Parameswaran P; Babu DA
    Micron; 2023 Mar; 166():103401. PubMed ID: 36587488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path.
    Liu X; Zhang S; Bao Y; Zhang Z; Yue Z
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Temperature on Mechanical Properties of Nanocrystalline 316L Stainless Steel Investigated via Molecular Dynamics Simulations.
    Husain A; La P; Hongzheng Y; Jie S
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32580316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.