These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35407771)

  • 1. Experimental Study on High-Temperature Damage Repair of Concrete by Soybean Urease Induced Carbonate Precipitation.
    Wei H; Fan Y; Sun L; Du H; Liang R
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Study on the Crack Concrete Repaired via Enzyme-Induced Calcium Carbonate Precipitation (EICP).
    Li G; Yan D; Liu J; Yang P; Zhang J
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of deposition process for a productive and cohesive bio-CaCO
    Gao R; Ma J; Liu G; Chen H; Wen J; Wang J
    Appl Microbiol Biotechnol; 2023 Jun; 107(11):3479-3494. PubMed ID: 37115250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment.
    Bansal R; Dhami NK; Mukherjee A; Reddy MS
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1497-1505. PubMed ID: 27581442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation Pattern of the Compressive Strength of Concrete under Combined Heat and Moisture Conditions.
    Li P; Liu J; Duan S; Huang R
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and identification of bacteria to improve the strength of concrete.
    Krishnapriya S; Venkatesh Babu DL; G PA
    Microbiol Res; 2015 May; 174():48-55. PubMed ID: 25946328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Study of Thermally Damaged Concrete under a Hygrothermal Environment by Using a Combined Infrared Thermal Imaging and Ultrasonic Pulse Velocity Method.
    Wang Y; Cui J; Deng J; Zhou H
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Bio-Foamed Concrete Brick Strength via Bacteria Based Self-Healing and Bio-Sequestration of CO
    Alshalif AF; Irwan JM; Tajarudin HA; Othman N; Al-Gheethi AA; Shamsudin S; Altowayti WAH; Abo Sabah S
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved strength and durability of concrete through metabolic activity of ureolytic bacteria.
    Alonso MJC; Ortiz CEL; Perez SOG; Narayanasamy R; Fajardo San Miguel GDJ; Hernández HH; Balagurusamy N
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21451-21458. PubMed ID: 28593545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocalcification by Piezotolerant Bacillus sp. NIOTVJ5 Isolated from Deep Sea Sediment and its Influence on the Strength of Concrete Specimens.
    Rangamaran VR; Shanmugam VK
    Mar Biotechnol (NY); 2019 Apr; 21(2):161-170. PubMed ID: 30535928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the Mechanical Performance of the UHPC Repaired Cementitious Composite System after Exposure to High Temperatures.
    Chen Q; Zhu Z; Ma R; Jiang Z; Zhang Y; Zhu H
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fire-Exposed Fly-Ash-Based Geopolymer Concrete: Effects of Burning Temperature on Mechanical and Microstructural Properties.
    Razak SNA; Shafiq N; Guillaumat L; Farhan SA; Lohana VK
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Ambient Temperature on High Performance Concrete Properties.
    Kaleta-Jurowska A; Jurowski K
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33080964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on Dynamic Compressive Performance and Failure Mechanism Analysis of Concrete after High Temperature and Rapid Cooling.
    Peng S; Yu Z; Zhao Q; Du X; Xie X; Chen B; Zhang Y
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation.
    Jeong JH; Jo YS; Park CS; Kang CH; So JS
    J Microbiol Biotechnol; 2017 Jul; 27(7):1331-1335. PubMed ID: 28478659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Cooling Methods on the Residual Mechanical Behavior of Fire-Exposed Concrete: An Experimental Study.
    Carvalho EFT; Silva Neto JTD; Soares Junior PRR; Maciel PS; Fransozo HL; Bezerra ACDS; Gouveia AMC
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31717731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair.
    Mahmood SK; Zakaria MZAB; Razak ISBA; Yusof LM; Jaji AZ; Tijani I; Hammadi NI
    Biochem Biophys Rep; 2017 Jul; 10():237-251. PubMed ID: 28955752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment.
    Peng J; Liu Z
    PLoS One; 2019; 14(6):e0218396. PubMed ID: 31211807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Performance of High-Strength Sustainable Concrete under Fire Incorporating Locally Available Volcanic Ash in Central Harrat Rahat, Saudi Arabia.
    Amin MN; Khan K
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties.
    Yoosathaporn S; Tiangburanatham P; Bovonsombut S; Chaipanich A; Pathom-Aree W
    Microbiol Res; 2016; 186-187():132-8. PubMed ID: 27242150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.