These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35407771)

  • 21. An indigenous bacterium with enhanced performance of microbially-induced Ca-carbonate biomineralization under extreme alkaline conditions for concrete and soil-improvement industries.
    Marín S; Cabestrero O; Demergasso C; Olivares S; Zetola V; Vera M
    Acta Biomater; 2021 Jan; 120():304-317. PubMed ID: 33212232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Residual Compressive Behavior of Self-Compacting Concrete after High Temperature Exposure-Influence of Binder Materials.
    Jelčić Rukavina M; Gabrijel I; Netinger Grubeša I; Mladenovič A
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A DIC-Based Study on Compressive Responses of Concrete after Exposure to Elevated Temperatures.
    Xiang S; Zeng L; Zhang J; Chen J; Liu Y; Cheng G; Mo J
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete.
    Wang JY; Belie ND; Verstraete W
    J Ind Microbiol Biotechnol; 2012 Apr; 39(4):567-77. PubMed ID: 21927907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcite-forming bacteria for compressive strength improvement in mortar.
    Park SJ; Park YM; Chun WY; Kim WJ; Ghim SY
    J Microbiol Biotechnol; 2010 Apr; 20(4):782-8. PubMed ID: 20467254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fungal-induced CaCO
    Zhao J; Csetenyi L; Gadd GM
    Sci Total Environ; 2022 Apr; 816():151501. PubMed ID: 34762953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of a Novel CaCO
    Choi S; Park S; Park M; Kim Y; Lee KM; Lee OM; Son HJ
    Molecules; 2021 May; 26(10):. PubMed ID: 34067627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical and Microstructural Characterization of Quarry Rock Dust Incorporated Steel Fiber Reinforced Geopolymer Concrete and Residual Properties after Exposure to Elevated Temperatures.
    Ibraheem M; Butt F; Waqas RM; Hussain K; Tufail RF; Ahmad N; Usanova K; Musarat MA
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effect of Ordinary Portland Cement Substitution on the Thermal Stability of Geopolymer Concrete.
    Zhang H; Li L; Long T; Sarker P; Shi X; Cai G; Wang Q
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating residual compressive strength of post-fire concrete using Raman Spectroscopy.
    Kerr T; Vetter M; Gonzalez-Rodriguez J
    Forensic Sci Int; 2021 Aug; 325():110874. PubMed ID: 34171544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical Properties of Ultra-High Performance Concrete before and after Exposure to High Temperatures.
    Chen HJ; Yu YL; Tang CW
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Lowered Temperature on Efficiency of Concrete Repair with Polymer-Cement Repair Mortars.
    Wojnowski D; Francke B; Garbacz A
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32987754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repeated Impact Response of Normal- and High-Strength Concrete Subjected to Temperatures up to 600 °C.
    Abid SR; Abbass AA; Murali G; Al-Sarray MLJ; Nader IA; Ali SH
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Elevated Temperature on Compressive Strength and Physical Properties of Neem Seed Husk Ash Concrete.
    Mwilongo KP; Machunda RL; Jande YAC
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32155949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzyme Induced Biocementated Sand with High Strength at Low Carbonate Content.
    Almajed A; Tirkolaei HK; Kavazanjian E; Hamdan N
    Sci Rep; 2019 Feb; 9(1):1135. PubMed ID: 30718723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and Performance of Repair Materials for Surface Defects in Pavement Concrete.
    Li P; Mao Z; Huang X; Deng M
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Healing Concrete by Biological Substrate.
    Chen HJ; Peng CF; Tang CW; Chen YT
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research on the True Triaxial Mechanical Properties of Concrete under the Coupling Action of High Temperature and Biaxial Unequal Lateral Pressure.
    Ren B; Wang T; Xu J; Wang Z; Lv Y; Ning Y
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Elevated Temperature on Mechanical Properties of High-Volume Fly Ash-Based Geopolymer Concrete, Mortar and Paste Cured at Room Temperature.
    Zhao J; Wang K; Wang S; Wang Z; Yang Z; Shumuye ED; Gong X
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34063268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial Concrete-a Sustainable Solution for Concrete Construction.
    Kaur P; Singh V; Arora A
    Appl Biochem Biotechnol; 2022 Mar; 194(3):1401-1416. PubMed ID: 34716869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.