These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 35407800)

  • 1. Laser Powder-Bed Fusion of Ceramic Particulate Reinforced Aluminum Alloys: A Review.
    Minasyan T; Hussainova I
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review on Traditional Processes and Laser Powder Bed Fusion of Aluminum Alloy Microstructures, Mechanical Properties, Costs, and Applications.
    Wang X; Zhang D; Li A; Yi D; Li T
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verification of the Laser Powder Bed Fusion Performance of 2024 Aluminum Alloys Modified Using Nano-LaB
    Yao Z; Xie Z
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process Optimization of SiC-Reinforced Aluminum Matrix Composites Prepared Using Laser Powder Bed Fusion and the Effect of Particle Morphology on Performance.
    Ji X; Li S; Liu H; Li X; Zhang X; Liu L; Li S; Gao L; Wang S; Chen B; Li Y
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and Mechanical Properties of Hypereutectic Al-High Si Alloys up to 70 wt.% Si-Content Produced from Pre-Alloyed and Blended Powder via Laser Powder Bed Fusion.
    Risse JH; Trempa M; Huber F; Höppel HW; Bartels D; Schmidt M; Reimann C; Friedrich J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review.
    Aversa A; Marchese G; Saboori A; Bassini E; Manfredi D; Biamino S; Ugues D; Fino P; Lombardi M
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacturing Aluminum/Multiwalled Carbon Nanotube Composites via Laser Powder Bed Fusion.
    Lee ER; Shin SE; Takata N; Kobashi M; Kato M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical Approach to Eliminate Solidification Cracks by Supplementing AlMg4.5Mn0.7 with AlSi10Mg Powder in Laser Powder Bed Fusion.
    Böhm C; Werz M; Weihe S
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additive manufacturing of Al
    Ur Rehman A; Ullah A; Liu T; Ur Rehman R; Salamci MU
    Front Chem; 2023; 11():1034473. PubMed ID: 36817171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process Optimization and Tailored Mechanical Properties of a Nuclear Zr-4 Alloy Fabricated via Laser Powder Bed Fusion.
    Song C; Zou Z; Yan Z; Liu F; Yang Y; Yan M; Han C
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Compressive Properties and Failure Mechanism of the Laser Powder Bed Fusion of Submicro-LaB6 Reinforced Ti-Based Composites.
    Li X; Liu Y
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circumventing Solidification Cracking Susceptibility in Al-Cu Alloys Prepared by Laser Powder Bed Fusion.
    Xi L; Lu Q; Gu D; Cao S; Zhang H; Kaban I; Sarac B; Prashanth KG; Eckert J
    3D Print Addit Manuf; 2024 Apr; 11(2):e731-e742. PubMed ID: 38689899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancements in the Additive Manufacturing of Magnesium and Aluminum Alloys through Laser-Based Approach.
    Sharma SK; Grewal HS; Saxena KK; Mohammed KA; Prakash C; Davim JP; Buddhi D; Raju R; Mohan DG; Tomków J
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.
    Bär F; Berger L; Jauer L; Kurtuldu G; Schäublin R; Schleifenbaum JH; Löffler JF
    Acta Biomater; 2019 Oct; 98():36-49. PubMed ID: 31132536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Mono and Hybrid Additives of Ceramic Nanoparticles on the Tribological Behavior and Mechanical Characteristics of an Al-Based Composite Matrix Produced by Friction Stir Processing.
    Moustafa EB; Taha MA
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser powder bed fusion (LPBF) of commercially pure titanium and alloy development for the LPBF process.
    Haase F; Siemers C; Rösler J
    Front Bioeng Biotechnol; 2023; 11():1260925. PubMed ID: 37744262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Laser Energy Density on the Microstructure and Texture Evolution of Hastelloy-X Alloy Fabricated by Laser Powder Bed Fusion.
    Zhang S; Lei Y; Chen Z; Wei P; Liu W; Yao S; Lu B
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occupational exposure during metal additive manufacturing: A case study of laser powder bed fusion of aluminum alloy.
    Azzougagh MN; Keller FX; Cabrol E; Cici M; Pourchez J
    J Occup Environ Hyg; 2021 Jun; 18(6):223-236. PubMed ID: 33989129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and molten pool morphology of TiB
    Wu J; Yang H; Lu G; Wu Y; Wang H; Wang H
    Heliyon; 2024 Feb; 10(3):e25196. PubMed ID: 38322845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.