These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 35407833)

  • 1. In Vitro Studies for Investigating Creep of Intervertebral Discs under Axial Compression: A Review of Testing Environment and Results.
    Yang M; Xiang D; Wang S; Liu W
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Radial Bulging and Axial Strains of Intervertebral Discs during Creep Obtained with the 3D-DIC System.
    Yang M; Xiang D; Wang S; Liu W
    Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36008991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading - Ex-vivo and In-Silico investigation.
    Nikkhoo M; Wang JL; Parnianpour M; El-Rich M; Khalaf K
    J Biomech; 2018 Mar; 70():26-32. PubMed ID: 29397111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments.
    van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH
    J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulations of polyvinyl alcohol cryogel that mimic the biomechanical properties of soft tissues in the natural lumbar intervertebral disc.
    Wang BH; Campbell G
    Spine (Phila Pa 1976); 2009 Dec; 34(25):2745-53. PubMed ID: 19940732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of frozen storage on the creep behavior of human intervertebral discs.
    Dhillon N; Bass EC; Lotz JC
    Spine (Phila Pa 1976); 2001 Apr; 26(8):883-8. PubMed ID: 11317110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical Aspects of Intervertebral Disc Injury and Implications on Biomechanics.
    Desmoulin GT; Pradhan V; Milner TE
    Spine (Phila Pa 1976); 2020 Apr; 45(8):E457-E464. PubMed ID: 31651681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are axial intervertebral disc biomechanics determined by osmosis?
    Vergroesen PA; Emanuel KS; Peeters M; Kingma I; Smit TH
    J Biomech; 2018 Mar; 70():4-9. PubMed ID: 28579261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc.
    Bass EC; Duncan NA; Hariharan JS; Dusick J; Bueff HU; Lotz JC
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2867-76. PubMed ID: 9431622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid-flow dependent response of intervertebral discs under cyclic loading: On the role of specimen preparation and preconditioning.
    Schmidt H; Schilling C; Reyna ALP; Shirazi-Adl A; Dreischarf M
    J Biomech; 2016 Apr; 49(6):846-856. PubMed ID: 26549766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomimetic artificial intervertebral disc system composed of a cubic three-dimensional fabric.
    Shikinami Y; Kawabe Y; Yasukawa K; Tsuta K; Kotani Y; Abumi K
    Spine J; 2010 Feb; 10(2):141-52. PubMed ID: 19944651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creep bulging deformation of intervertebral disc under axial compression.
    Pei BQ; Li H; Li DY; Fan YB; Wang C; Wu SQ
    Biomed Mater Eng; 2014; 24(1):191-8. PubMed ID: 24211898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hydration on the stiffness of intervertebral discs in an ovine model.
    Costi JJ; Hearn TC; Fazzalari NL
    Clin Biomech (Bristol, Avon); 2002 Jul; 17(6):446-55. PubMed ID: 12135546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships between viscoelastic properties of lumbar intervertebral disc and degeneration grade assessed by MRI.
    Campana S; Charpail E; de Guise JA; Rillardon L; Skalli W; Mitton D
    J Mech Behav Biomed Mater; 2011 May; 4(4):593-9. PubMed ID: 21396608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading.
    Koeller W; Funke F; Hartmann F
    Biorheology; 1984; 21(5):675-86. PubMed ID: 6518283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical test protocols to detect minor injury effects in intervertebral discs.
    Torre OM; Evashwick-Rogler TW; Nasser P; Iatridis JC
    J Mech Behav Biomed Mater; 2019 Jul; 95():13-20. PubMed ID: 30947120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical behavior of a biomimetic artificial intervertebral disc.
    van den Broek PR; Huyghe JM; Ito K
    Spine (Phila Pa 1976); 2012 Mar; 37(6):E367-73. PubMed ID: 21912317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of in vitro mechanical testing for intervertebral disc injectable biomaterials.
    Dixon AR; Warren JP; Culbert MP; Mengoni M; Wilcox RK
    J Mech Behav Biomed Mater; 2021 Nov; 123():104703. PubMed ID: 34365096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of testing environment and loading rate on intervertebral disc compressive mechanics: An assessment of repeatability at three different laboratories.
    Newell N; Rivera Tapia D; Rahman T; Lim S; O'Connell GD; Holsgrove TP
    JOR Spine; 2020 Sep; 3(3):e21110. PubMed ID: 33015585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.