These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35407833)

  • 21. Influence of testing environment and loading rate on intervertebral disc compressive mechanics: An assessment of repeatability at three different laboratories.
    Newell N; Rivera Tapia D; Rahman T; Lim S; O'Connell GD; Holsgrove TP
    JOR Spine; 2020 Sep; 3(3):e21110. PubMed ID: 33015585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preload substantially influences the intervertebral disc stiffness in loading-unloading cycles of compression.
    Schmidt H; Shirazi-Adl A; Schilling C; Dreischarf M
    J Biomech; 2016 Jun; 49(9):1926-1932. PubMed ID: 27209550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Artificial PVA-BC Composite That Mimics the Biomechanical Properties and Structure of a Natural Intervertebral Disc.
    Yang M; Xiang D; Chen Y; Cui Y; Wang S; Liu W
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematic evaluation of one- and two-level Maverick lumbar total disc replacement caudal to a long thoracolumbar spinal fusion.
    Zhu Q; Itshayek E; Jones CF; Schwab T; Larson CR; Lenke LG; Cripton PA
    Eur Spine J; 2012 Jun; 21 Suppl 5(Suppl 5):S599-611. PubMed ID: 22531900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Creep characteristics of the human spinal column.
    Kazarian LE
    Orthop Clin North Am; 1975 Jan; 6(1):3-18. PubMed ID: 1113976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanics of the human intervertebral disc: A review of testing techniques and results.
    Newell N; Little JP; Christou A; Adams MA; Adam CJ; Masouros SD
    J Mech Behav Biomed Mater; 2017 May; 69():420-434. PubMed ID: 28262607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs.
    Koeller W; Meier W; Hartmann F
    Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Research progress on mechanical performance evaluation of artificial intervertebral disc].
    Li R; Wang S; Liao Z; Liu W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Jun; 35(3):493-500. PubMed ID: 29938961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of repeated biaxial loads on the creep properties of cardinal ligaments.
    Baah-Dwomoh A; De Vita R
    J Mech Behav Biomed Mater; 2017 Oct; 74():128-141. PubMed ID: 28599153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs.
    MacLean JJ; Owen JP; Iatridis JC
    J Biomech; 2007; 40(1):55-63. PubMed ID: 16427060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decellularized Intervertebral Discs: A Potential Replacement for Degenerate Human Discs.
    Norbertczak HT; Ingham E; Fermor HL; Wilcox RK
    Tissue Eng Part C Methods; 2020 Nov; 26(11):565-576. PubMed ID: 33050844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The long-term mechanical integrity of non-reinforced PEEK-OPTIMA polymer for demanding spinal applications: experimental and finite-element analysis.
    Ferguson SJ; Visser JM; Polikeit A
    Eur Spine J; 2006 Feb; 15(2):149-56. PubMed ID: 15940477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression--influence of age and degeneration.
    Koeller W; Muehlhaus S; Meier W; Hartmann F
    J Biomech; 1986; 19(10):807-16. PubMed ID: 3782163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs.
    Miyamoto K; Masuda K; Kim JG; Inoue N; Akeda K; Andersson GB; An HS
    Spine J; 2006; 6(6):692-703. PubMed ID: 17088200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions.
    Velísková P; Bashkuev M; Shirazi-Adl A; Schmidt H
    J Biomech; 2018 Mar; 70():16-25. PubMed ID: 29132725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading.
    Keller TS; Spengler DM; Hansson TH
    J Orthop Res; 1987; 5(4):467-78. PubMed ID: 3681521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration.
    O'Connell GD; Jacobs NT; Sen S; Vresilovic EJ; Elliott DM
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):933-42. PubMed ID: 21783103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load.
    Zirbel SA; Stolworthy DK; Howell LL; Bowden AE
    Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.