These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35407861)

  • 1. Investigation of the Initial Corrosion Destruction of a Metal Matrix around Different Non-Metallic Inclusions on Surfaces of Pipeline Steels.
    Sidorova E; Karasev A; Kuznetsov D; Jönsson PG
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of pitting corrosion induced by inclusions in Al-Ti-Mg deoxidized high strength pipeline steel.
    Hou Y; Wang J; Liu L; Li G; Zhai D
    Micron; 2020 Nov; 138():102898. PubMed ID: 32890904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Non-Metallic Inclusions by Means of Chemical and Electrolytic Extraction-A Review.
    Ramesh Babu S; Michelic SK
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Ti and Cu Addition on Inclusion Modification and Corrosion Behavior in Simulated Coarse-Grained Heat-Affected Zone of Low-Alloy Steels.
    Wang Y; Zhang X; Wei W; Wan X; Liu J; Wu K
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Yttrium composite inclusions on the localized corrosion of pipeline steels in NaCl solution.
    Hou Y; Li T; Li G; Cheng C
    Micron; 2020 Mar; 130():102820. PubMed ID: 31901734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism Understanding of the Role of Rare Earth Inclusions in the Initial Marine Corrosion Process of Microalloyed Steels.
    Tang M; Wu K; Liu J; Cheng L; Zhang X; Chen Y
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31618853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why stainless steel corrodes.
    Ryan MP; Williams DE; Chater RJ; Hutton BM; McPhail DS
    Nature; 2002 Feb; 415(6873):770-4. PubMed ID: 11845203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Non-Metallic Inclusions on Bending Fatigue Strength of High-Quality Carbon Constructional Steel Heated in an Industrial Electric Arc Furnace.
    Lipiński T
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Study on the Behavior of TiN and Ti
    Michelic SK; Bernhard C
    Scanning; 2017; 2017():2326750. PubMed ID: 29109805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized Corrosion Occurrence in Low-Carbon Steel Pipe Caused by Microstructural Inhomogeneity.
    Lee YH; Kim GI; Kim KM; Ko SJ; Kim WC; Kim JG
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inclusion Characteristics in 95CrMo Steels with Different Calcium and Sulfur Contents.
    Li X; Long X; Wang L; Tong S; Wang X; Zhang Y; Li Y
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32019218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Corrosion Resistance and Hardness Properties of Carbon Steel through Modification of Microstructure.
    Handoko W; Pahlevani F; Sahajwalla V
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30487430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation of microbial corrosion by Cu addition to X65 pipeline steel by Pseudomonas aeruginosa MCCC 1A00099.
    Li Y; Shi X; Li J; Zeng Y; Shen M; Yan W; Yang K
    Arch Microbiol; 2022 May; 204(6):299. PubMed ID: 35513559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of thermodynamic changes in the cooling of saline soils on the corrosion system of carbon steels.
    Qi G; Dong Y; Feng Y; Wei J; Han P; Bai X; He B
    RSC Adv; 2022 Oct; 12(44):28767-28779. PubMed ID: 36320490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bending Fatigue Behaviors Analysis and Fatigue Life Prediction of 20Cr2Ni4 Gear Steel with Different Stress Concentrations near Non-metallic Inclusions.
    Xing Z; Wang Z; Wang H; Shan D
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31640231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Cathodic Protection Potential Fluctuations on the Corrosion of Low-Carbon Steels and Hydrogen Absorption by the Metal in Chloride Solutions with Nearly Neutral pH.
    Marshakov AI; Rybkina AA
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view.
    Ma Y; Zhang Y; Zhang R; Guan F; Hou B; Duan J
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):515-525. PubMed ID: 31807887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructural Effects in the Development of Near-Neutral pH Stress Corrosion Cracks in Pipelines.
    Zhang C; Ran M; Wang Y; Zheng W
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of Chemical Composition and Modeling of Growth Nonmetallic Inclusions in Steel Containing Yttrium.
    Kalisz D; Żak PL; Semiryagin S; Gerasin S
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of biofilms in the corrosion of steel in marine environments.
    Procópio L
    World J Microbiol Biotechnol; 2019 Apr; 35(5):73. PubMed ID: 31037431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.