These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35407902)

  • 1. Phase Field Models for Thermal Fracturing and Their Variational Structures.
    Alfat S; Kimura M; Maulana AM
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple model for viscoelastic crack propagation.
    Persson BNJ
    Eur Phys J E Soft Matter; 2021 Feb; 44(1):3. PubMed ID: 33570714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the Fracture Behavior of Tetragonal Zirconia Polycrystal with a Modified Phase Field Model.
    Zhu J; Luo J; Sun Y
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33027967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Yield Strength Distribution Welded Joint on Crack Propagation Path and Crack Mechanical Tip Field.
    Bi Y; Yuan X; Lv J; Bashir R; Wang S; Xue H
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Phase Field Approach to Two-Dimensional Quasicrystals with Mixed Mode Cracks.
    Li T; Yang Z; Xu C; Xu X; Zhou Z
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-Field Simulation of Temperature-Dependent Thermal Shock Fracture of Al
    Pang Y; Li D; Li X; Wang R; Ao X
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hybrid Finite Volume and Extended Finite Element Method for Hydraulic Fracturing with Cohesive Crack Propagation in Quasi-Brittle Materials.
    Liu C; Shen Z; Gan L; Jin T; Zhang H; Liu D
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative modelling of crack propagation in elastic-plastic materials using the meshfree local radial basis point interpolation method and eXtended finite-element method.
    Li Y; Xu N; Tu J; Mei G
    R Soc Open Sci; 2019 Nov; 6(11):190543. PubMed ID: 31827821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanism of the dentino-enamel junction on the resist-crack propagation of human teeth by the finite element method].
    Jingjing Z; Tiezhou H; Hong T; Xueyan G; Cui W
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2014 Oct; 32(5):464-6. PubMed ID: 25490823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational framework for crack propagation in spatially heterogeneous materials.
    Lewandowski K; Kaczmarczyk Ł; Athanasiadis I; Marshall JF; Pearce CJ
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200291. PubMed ID: 34148414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phase-field approach to model fracture of arterial walls: Theory and finite element analysis.
    Gültekin O; Dal H; Holzapfel GA
    Comput Methods Appl Mech Eng; 2016 Dec; 312():542-566. PubMed ID: 31649409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crack motion in viscoelastic solids: the role of the flash temperature.
    Carbone G; Persson BN
    Eur Phys J E Soft Matter; 2005 Jul; 17(3):261-81. PubMed ID: 15997339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full thermo-mechanical coupling using eXtended finite element method in quasi-transient crack propagation.
    Habib F; Sorelli L; Fafard M
    Adv Model Simul Eng Sci; 2018; 5(1):18. PubMed ID: 30997328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Tearing Conditions on the Crack Propagation in a Monolayer Graphene Sheet.
    Shi J; Yu W; Hu C; Duan H; Ji J; Kang Y; Cai K
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Crack Obstruction Mechanisms in Crofer
    Fischer T; Kuhn B
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on damage progression of drill string material based on the extended finite element method.
    Ying Z; Zhanghua L; Chenxin W; Brice NF
    Sci Prog; 2021; 104(3):368504211042258. PubMed ID: 34519563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Extended Hydro-Mechanical Coupling Model Based on Smoothed Particle Hydrodynamics for Simulating Crack Propagation in Rocks under Hydraulic and Compressive Loads.
    Mu D; Tang A; Qu H; Wang J
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack phase-field model.
    Gültekin O; Dal H; Holzapfel GA
    Comput Methods Appl Mech Eng; 2018 Apr; 331():23-52. PubMed ID: 31649410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoelastic Processes by a Continuous Heat Source Line in an Infinite Solid via Moore-Gibson-Thompson Thermoelasticity.
    Abouelregal AE; Ahmed IE; Nasr ME; Khalil KM; Zakria A; Mohammed FA
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33050102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional thermoelasticity problem for an infinite solid with a penny-shaped crack under prescribed heat flux across its surfaces.
    Povstenko Y; Kyrylych T
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2172):20190289. PubMed ID: 32389083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.