These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 35407944)

  • 1. Corrosion Behavior in Magnesium-Based Alloys for Biomedical Applications.
    Xu L; Liu X; Sun K; Fu R; Wang G
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current status and perspectives of zinc-based absorbable alloys for biomedical applications.
    Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H
    Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface.
    Li X; Liu X; Wu S; Yeung KWK; Zheng Y; Chu PK
    Acta Biomater; 2016 Nov; 45():2-30. PubMed ID: 27612959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in functionalized polymer coatings on biodegradable magnesium alloys - A review.
    Li LY; Cui LY; Zeng RC; Li SQ; Chen XB; Zheng Y; Kannan MB
    Acta Biomater; 2018 Oct; 79():23-36. PubMed ID: 30149212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A surface-engineered multifunctional TiO
    Lin Z; Wu S; Liu X; Qian S; Chu PK; Zheng Y; Cheung KMC; Zhao Y; Yeung KWK
    Acta Biomater; 2019 Nov; 99():495-513. PubMed ID: 31518705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements.
    Chen Y; Dou J; Yu H; Chen C
    J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives.
    Shahin M; Munir K; Wen C; Li Y
    Acta Biomater; 2019 Sep; 96():1-19. PubMed ID: 31181263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxicity studies of AZ31D alloy and the effects of carbon dioxide on its biodegradation behavior in vitro.
    Wang J; Qin L; Wang K; Wang J; Yue Y; Li Y; Tang J; Li W
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4416-26. PubMed ID: 23910361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems.
    Liu J; Bian D; Zheng Y; Chu X; Lin Y; Wang M; Lin Z; Li M; Zhang Y; Guan S
    Acta Biomater; 2020 Jan; 102():508-528. PubMed ID: 31722254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications.
    Agarwal S; Curtin J; Duffy B; Jaiswal S
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():948-963. PubMed ID: 27524097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31.
    Bagherifard S; Hickey DJ; Fintová S; Pastorek F; Fernandez-Pariente I; Bandini M; Webster TJ; Guagliano M
    Acta Biomater; 2018 Jan; 66():93-108. PubMed ID: 29183850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multifunctional polypyrrole/zinc oxide composite coating on biodegradable magnesium alloys for orthopedic implants.
    Guo Y; Jia S; Qiao L; Su Y; Gu R; Li G; Lian J
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111186. PubMed ID: 32535243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification.
    Hou X; Qin H; Gao H; Mankoci S; Zhang R; Zhou X; Ren Z; Doll GL; Martini A; Sahai N; Dong Y; Ye C
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():1061-1071. PubMed ID: 28575941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on magnesium alloys for biomedical applications.
    Zhang T; Wang W; Liu J; Wang L; Tang Y; Wang K
    Front Bioeng Biotechnol; 2022; 10():953344. PubMed ID: 36051586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation.
    Wang C; Fang H; Qi X; Hang C; Sun Y; Peng Z; Wei W; Wang Y
    Acta Biomater; 2019 Jun; 91():99-111. PubMed ID: 31028907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys.
    Zhao Y; Jamesh MI; Li WK; Wu G; Wang C; Zheng Y; Yeung KW; Chu PK
    Acta Biomater; 2014 Jan; 10(1):544-56. PubMed ID: 24140607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic layer deposited ZrO
    Yang Q; Yuan W; Liu X; Zheng Y; Cui Z; Yang X; Pan H; Wu S
    Acta Biomater; 2017 Aug; 58():515-526. PubMed ID: 28611003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo degradation assessment and preventive measures of biodegradable Mg alloys for biomedical applications.
    Jana A; Das M; Balla VK
    J Biomed Mater Res A; 2022 Feb; 110(2):462-487. PubMed ID: 34418295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review.
    Kiani F; Wen C; Li Y
    Acta Biomater; 2020 Feb; 103():1-23. PubMed ID: 31881312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications.
    Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT
    J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.