These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
430 related articles for article (PubMed ID: 35408067)
1. RDCTrans U-Net: A Hybrid Variable Architecture for Liver CT Image Segmentation. Li L; Ma H Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408067 [TBL] [Abstract][Full Text] [Related]
2. ASD-Net: a novel U-Net based asymmetric spatial-channel convolution network for precise kidney and kidney tumor image segmentation. Ji Z; Mu J; Liu J; Zhang H; Dai C; Zhang X; Ganchev I Med Biol Eng Comput; 2024 Jun; 62(6):1673-1687. PubMed ID: 38326677 [TBL] [Abstract][Full Text] [Related]
3. Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images. Seo H; Huang C; Bassenne M; Xiao R; Xing L IEEE Trans Med Imaging; 2020 May; 39(5):1316-1325. PubMed ID: 31634827 [TBL] [Abstract][Full Text] [Related]
4. SWTRU: Star-shaped Window Transformer Reinforced U-Net for medical image segmentation. Zhang J; Liu Y; Wu Q; Wang Y; Liu Y; Xu X; Song B Comput Biol Med; 2022 Nov; 150():105954. PubMed ID: 36122443 [TBL] [Abstract][Full Text] [Related]
5. ASU-Net++: A nested U-Net with adaptive feature extractions for liver tumor segmentation. Gao Q; Almekkawy M Comput Biol Med; 2021 Sep; 136():104688. PubMed ID: 34523421 [TBL] [Abstract][Full Text] [Related]
6. Hybrid dilation and attention residual U-Net for medical image segmentation. Wang Z; Zou Y; Liu PX Comput Biol Med; 2021 Jul; 134():104449. PubMed ID: 33993015 [TBL] [Abstract][Full Text] [Related]
7. Hybrid-attention densely connected U-Net with GAP for extracting livers from CT volumes. Chen Y; Hu F; Wang Y; Zheng C Med Phys; 2022 Feb; 49(2):1015-1033. PubMed ID: 35015305 [TBL] [Abstract][Full Text] [Related]
8. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images. Kushnure DT; Talbar SN Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959 [TBL] [Abstract][Full Text] [Related]
9. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup. Liu Y; Zhang M; Zhong Z; Zeng X Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788 [TBL] [Abstract][Full Text] [Related]
10. Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net. Wu Y; Shen H; Tan Y; Shi Y Int J Comput Assist Radiol Surg; 2022 Oct; 17(10):1915-1922. PubMed ID: 35672595 [TBL] [Abstract][Full Text] [Related]
11. DENSE-INception U-net for medical image segmentation. Zhang Z; Wu C; Coleman S; Kerr D Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817 [TBL] [Abstract][Full Text] [Related]
12. DCU-Net: Multi-scale U-Net for brain tumor segmentation. Yang T; Zhou Y; Li L; Zhu C J Xray Sci Technol; 2020; 28(4):709-726. PubMed ID: 32444591 [TBL] [Abstract][Full Text] [Related]
13. SAR-U-Net: Squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography. Wang J; Lv P; Wang H; Shi C Comput Methods Programs Biomed; 2021 Sep; 208():106268. PubMed ID: 34274611 [TBL] [Abstract][Full Text] [Related]
14. ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images. Liu T; Pan J; Torigian DA; Xu P; Miao Q; Tong Y; Udupa JK Med Phys; 2020 Jul; 47(7):2986-2999. PubMed ID: 32170754 [TBL] [Abstract][Full Text] [Related]
15. A Multi-Scale Liver Tumor Segmentation Method Based on Residual and Hybrid Attention Enhanced Network with Contextual Integration. Sun L; Jiang L; Wang M; Wang Z; Xin Y Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275756 [TBL] [Abstract][Full Text] [Related]
16. VSmTrans: A hybrid paradigm integrating self-attention and convolution for 3D medical image segmentation. Liu T; Bai Q; Torigian DA; Tong Y; Udupa JK Med Image Anal; 2024 Dec; 98():103295. PubMed ID: 39217673 [TBL] [Abstract][Full Text] [Related]
17. Joint liver and hepatic lesion segmentation in MRI using a hybrid CNN with transformer layers. Hille G; Agrawal S; Tummala P; Wybranski C; Pech M; Surov A; Saalfeld S Comput Methods Programs Biomed; 2023 Oct; 240():107647. PubMed ID: 37329803 [TBL] [Abstract][Full Text] [Related]
18. A multiple-channel and atrous convolution network for ultrasound image segmentation. Zhang L; Zhang J; Li Z; Song Y Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105 [TBL] [Abstract][Full Text] [Related]
19. TDCAU-Net: retinal vessel segmentation using transformer dilated convolutional attention-based U-Net method. Li C; Li Z; Liu W Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38052089 [TBL] [Abstract][Full Text] [Related]
20. Liver tumor segmentation based on 3D convolutional neural network with dual scale. Meng L; Tian Y; Bu S J Appl Clin Med Phys; 2020 Jan; 21(1):144-157. PubMed ID: 31793212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]