BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35408232)

  • 1. Smartphone-Based Activity Recognition Using Multistream Movelets Combining Accelerometer and Gyroscope Data.
    Huang EJ; Yan K; Onnela JP
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Augmented Movelet Method for Activity Classification Using Smartphone Gyroscope and Accelerometer Data.
    Huang EJ; Onnela JP
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32630752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer.
    Barua A; Jiang X; Fuller D
    Biomed Eng Online; 2024 Feb; 23(1):21. PubMed ID: 38368358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition.
    Javed AR; Sarwar MU; Khan S; Iwendi C; Mittal M; Kumar N
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand.
    Ebner M; Fetzer T; Bullmann M; Deinzer F; Grzegorzek M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction: Huang, E.J., and Onnela, J.P. Augmented Movelet Method for Activity Classification Using Smartphone Gyroscope and Accelerometer Data.
    Huang EJ; Onnela JP
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2016 Mar; 16(4):426. PubMed ID: 27023543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone.
    Lahdenoja O; Hurnanen T; Iftikhar Z; Nieminen S; Knuutila T; Saraste A; Kiviniemi T; Vasankari T; Airaksinen J; Pankaala M; Koivisto T
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):108-118. PubMed ID: 28391210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.
    Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H
    J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smartphone-Based Human Sitting Behaviors Recognition Using Inertial Sensor.
    Sinha VK; Patro KK; Pławiak P; Prakash AJ
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile sensors based platform of Human Physical Activities Recognition for COVID-19 spread minimization.
    Sardar AW; Ullah F; Bacha J; Khan J; Ali F; Lee S
    Comput Biol Med; 2022 Jul; 146():105662. PubMed ID: 35654623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iSignDB: A database for smartphone signature biometrics.
    Jabin S; Ahmad S; Mishra S; Zareen FJ
    Data Brief; 2020 Dec; 33():106597. PubMed ID: 33318981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of smartphone motion sensors for physical activity recognition.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2014 Jun; 14(6):10146-76. PubMed ID: 24919015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid deep approach to recognizing student activity and monitoring health physique based on accelerometer data from smartphones.
    Xiao L; Luo K; Liu J; Foroughi A
    Sci Rep; 2024 Jun; 14(1):14006. PubMed ID: 38890409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Estimation of COVID-19 Social Distance using Smartphone Sensor Data.
    Semenov O; Agu E; Pahlavan K
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4452-4457. PubMed ID: 34892208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A feasibility study on smartphone accelerometer-based recognition of household activities and influence of smartphone position.
    Della Mea V; Quattrin O; Parpinel M
    Inform Health Soc Care; 2017 Dec; 42(4):321-334. PubMed ID: 28005434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for Real-Time Prediction of the Mode of Travel Using Smartphone-Based GPS and Accelerometer Data.
    Martin BD; Addona V; Wolfson J; Adomavicius G; Fan Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28885550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensor Fusion for Recognition of Activities of Daily Living.
    Wu J; Feng Y; Sun P
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.