These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35408232)

  • 21. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data.
    Abujrida H; Agu E; Pahlavan K
    Biomed Phys Eng Express; 2020 Mar; 6(3):035005. PubMed ID: 33438650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance Analysis of Gyroscope and Accelerometer Sensors for Seismocardiography-Based Wearable Pre-Ejection Period Estimation.
    Shandhi MMH; Semiz B; Hersek S; Goller N; Ayazi F; Inan OT
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2365-2374. PubMed ID: 30703050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors.
    Garcia-Gonzalez D; Rivero D; Fernandez-Blanco E; Luaces MR
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.
    Kos A; Tomažič S; Umek A
    Sensors (Basel); 2016 Feb; 16(3):301. PubMed ID: 26927125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Walking Recognition in Mobile Devices.
    Casado FE; Rodríguez G; Iglesias R; Regueiro CV; Barro S; Canedo-Rodríguez A
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison between Accelerometer and Gyroscope in Predicting Level-Ground Running Kinematics by Treadmill Running Kinematics Using a Single Wearable Sensor.
    Chow DHK; Tremblay L; Lam CY; Yeung AWY; Cheng WHW; Tse PTW
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classification accuracies of physical activities using smartphone motion sensors.
    Wu W; Dasgupta S; Ramirez EE; Peterson C; Norman GJ
    J Med Internet Res; 2012 Oct; 14(5):e130. PubMed ID: 23041431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel Use of a Smartphone to Measure Standing Balance.
    Shah N; Aleong R; So I
    JMIR Rehabil Assist Technol; 2016 Mar; 3(1):e4. PubMed ID: 28582247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comprehensive comparison of simple step counting techniques using wrist- and ankle-mounted accelerometer and gyroscope signals.
    Rhudy MB; Mahoney JM
    J Med Eng Technol; 2018 Apr; 42(3):236-243. PubMed ID: 29846134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Body position classification for cardiorespiratory measurement.
    Mlynczak M; Berka M; Niewiadomski W; Cybulski G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3515-3518. PubMed ID: 28269056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human Lower Limb Motion Capture and Recognition Based on Smartphones.
    Duan LT; Lawo M; Wang ZG; Wang HY
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects.
    Scalera GM; Ferrarin M; Rabuffetti M
    J Biomech; 2020 Dec; 113():110115. PubMed ID: 33221581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility of a smartphone-based balance assessment system for subjects with chronic stroke.
    Hou YR; Chiu YL; Chiang SL; Chen HY; Sung WH
    Comput Methods Programs Biomed; 2018 Jul; 161():191-195. PubMed ID: 29852961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting human movement with multiple accelerometers using movelets.
    He B; Bai J; Zipunnikov VV; Koster A; Caserotti P; Lange-Maia B; Glynn NW; Harris TB; Crainiceanu CM
    Med Sci Sports Exerc; 2014 Sep; 46(9):1859-66. PubMed ID: 25134005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in trunk sway and impairment during sitting and standing in children with cerebral palsy.
    Kim DH; An DH; Yoo WG
    Technol Health Care; 2018; 26(5):761-768. PubMed ID: 29991150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stress Detection via Keyboard Typing Behaviors by Using Smartphone Sensors and Machine Learning Techniques.
    Sağbaş EA; Korukoglu S; Balli S
    J Med Syst; 2020 Feb; 44(4):68. PubMed ID: 32072331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel algorithm for a smartphone-based 6-minute walk test application: algorithm, application development, and evaluation.
    Capela NA; Lemaire ED; Baddour N
    J Neuroeng Rehabil; 2015 Feb; 12():19. PubMed ID: 25889112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The occupational sitting and physical activity questionnaire (OSPAQ): a validation study with accelerometer-assessed measures.
    Maes I; Ketels M; Van Dyck D; Clays E
    BMC Public Health; 2020 Jul; 20(1):1072. PubMed ID: 32631292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.