These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35408266)

  • 1. Measurement of Longitudinal Chromatic Aberration in the Last Crystalline Lens Surface Using Hartmann Test and Purkinje Images.
    Calderon-Uribe U; Hernandez-Gomez G; Gomez-Vieyra A
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.
    Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S
    Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrations of the human eye in visible and near infrared illumination.
    Llorente L; Diaz-Santana L; Lara-Saucedo D; Marcos S
    Optom Vis Sci; 2003 Jan; 80(1):26-35. PubMed ID: 12553541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A possible change of refractive index with age and its relevance to chromatic aberration.
    Millodot M; Newton IA
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1976 Dec; 201(2):159-67. PubMed ID: 1087839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in corneal and ocular higher-order wavefront aberrations.
    Amano S; Amano Y; Yamagami S; Miyai T; Miyata K; Samejima T; Oshika T
    Am J Ophthalmol; 2004 Jun; 137(6):988-92. PubMed ID: 15183781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Quantitative assessment of quality of vision].
    Oshika T
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):770-807; discussion 808. PubMed ID: 15656087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye.
    Kelly JE; Mihashi T; Howland HC
    J Vis; 2004 Apr; 4(4):262-71. PubMed ID: 15134473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal chromatic aberration of the human infant eye.
    Wang J; Candy TR; Teel DF; Jacobs RJ
    J Opt Soc Am A Opt Image Sci Vis; 2008 Sep; 25(9):2263-70. PubMed ID: 18758552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatic aberration and optical power of a diffractive bifocal contact lens.
    Atchison DA; Ye M; Bradley A; Collins MJ; Zhang X; Rahman HA; Thibos LN
    Optom Vis Sci; 1992 Oct; 69(10):797-804. PubMed ID: 1437002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to the study of ocular chromatic aberrations.
    Marcos S; Burns SA; Moreno-Barriusop E; Navarro R
    Vision Res; 1999 Oct; 39(26):4309-23. PubMed ID: 10789425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polychromatic Image Performance of Diffractive Bifocal Intraocular Lenses: Longitudinal Chromatic Aberration and Energy Efficiency.
    Millán MS; Vega F; Ríos-López I
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):2021-8. PubMed ID: 27100158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative comparison of different-shaped wavefront sensors and preliminary results for defocus aberrations on a mechanical eye.
    Carvalho LA; Chamon W; Schor P; Castro JC
    Arq Bras Oftalmol; 2006; 69(2):239-47. PubMed ID: 16699677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo chromatic aberration in eyes implanted with intraocular lenses.
    Pérez-Merino P; Dorronsoro C; Llorente L; Durán S; Jiménez-Alfaro I; Marcos S
    Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):2654-61. PubMed ID: 23493299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute accuracy of Placido-based videokeratographs to measure the optical aberrations of the cornea.
    Carvalho LA
    Optom Vis Sci; 2004 Aug; 81(8):616-28. PubMed ID: 15300121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions.
    Villegas EA; Artal P
    Optom Vis Sci; 2003 Feb; 80(2):106-14. PubMed ID: 12597325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wavelength tunable wavefront sensor for the human eye.
    Manzanera S; Canovas C; Prieto PM; Artal P
    Opt Express; 2008 May; 16(11):7748-55. PubMed ID: 18545485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of age on the chronatic aberration of the eye.
    Millodot M
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1976 Mar; 198(3):235-43. PubMed ID: 1083167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths.
    Rucker FJ; Wallman J
    Vision Res; 2008 Sep; 48(19):1980-91. PubMed ID: 18585403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans.
    Kröger RH; Gislén A
    Vision Res; 2004; 44(18):2129-34. PubMed ID: 15183679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the Human Myopic Eye Cornea Compensation Based on the Analysis of Aberrometric Data.
    Khorin PA; Khonina SN
    Vision (Basel); 2023 Mar; 7(1):. PubMed ID: 36977301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.