These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35408287)

  • 1. Sensors Allocation and Observer Design for Discrete Bilateral Teleoperation Systems with Multi-Rate Sampling.
    Ghavifekr AA; De Fazio R; Velazquez R; Visconti P
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exponential stability of bilateral sampled-data teleoperation systems using multirate approach.
    Ghavifekr AA; Ghiasi AR; Badamchizadeh MA; Hashemzadeh F
    ISA Trans; 2020 Oct; 105():190-197. PubMed ID: 32493577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-user nonlinear teleoperation subjected to varying time delay and bounded inputs.
    Zakerimanesh A; Hashemzadeh F; Ghiasi AR
    ISA Trans; 2017 May; 68():33-47. PubMed ID: 28267986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilateral Teleoperation With New Cooperative Structure Based on Reconfigurable Robots and Type-2 Fuzzy Logic.
    Sun D; Liao Q; Gu X; Li C; Ren H
    IEEE Trans Cybern; 2019 Aug; 49(8):2845-2859. PubMed ID: 30072352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive neural network based position tracking control for Dual-master/Single-slave teleoperation system under communication constant time delays.
    Ji Y; Liu D; Guo Y
    ISA Trans; 2019 Oct; 93():80-92. PubMed ID: 30910311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilateral Teleoperation of Single-Master Multislave Systems With Semi-Markovian Jump Stochastic Interval Time-Varying Delayed Communication Channels.
    Baranitha R; Mohajerpoor R; Rakkiyappan R
    IEEE Trans Cybern; 2021 Jan; 51(1):247-257. PubMed ID: 30703052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Control of Semi-Autonomous Teleoperation System With Asymmetric Time-Varying Delays and Input Uncertainties.
    Zhai DH; Xia Y
    IEEE Trans Cybern; 2017 Nov; 47(11):3621-3633. PubMed ID: 27295699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robust Fault-Tolerant Predictive Control for Discrete-Time Linear Systems Subject to Sensor and Actuator Faults.
    Bououden S; Boulkaibet I; Chadli M; Abboudi A
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-fidelity bilateral teleoperation systems and the effect of multimodal haptics.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1512-28. PubMed ID: 18179070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilateral motion prediction and control for teleoperation under long time-varying delays.
    Shen S; Song A; Li T
    ISA Trans; 2021 Sep; 115():61-70. PubMed ID: 33461740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A passivity criterion for sampled-data bilateral teleoperation systems.
    Jazayeri A; Tavakoli M
    IEEE Trans Haptics; 2013; 6(3):363-9. PubMed ID: 24808332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensor-less force-reflecting macro-micro telemanipulation systems by piezoelectric actuators.
    Amini H; Farzaneh B; Azimifar F; Sarhan AAD
    ISA Trans; 2016 Sep; 64():293-302. PubMed ID: 27329852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel control architecture for physiological tremor compensation in teleoperated systems.
    Ghorbanian A; Zareinejad M; Rezaei SM; Sheikhzadeh H; Baghestan K
    Int J Med Robot; 2013 Sep; 9(3):280-97. PubMed ID: 22588805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of Interaction Force Estimation on Performance in Bilateral Teleoperation.
    Naerum E; Elle OJ; Hannaford B
    IEEE Trans Haptics; 2012; 5(2):160-71. PubMed ID: 26964072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributed Neural-Network-Based Cooperation Control for Teleoperation of Multiple Mobile Manipulators Under Round-Robin Protocol.
    Li Y; Wang L; Liu K; He W; Yin Y; Johansson R
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4841-4855. PubMed ID: 34767516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of feedforward and feedback position control for passive bilateral teleoperation with delays.
    Kostyukova O; Vista FP; Chong KT
    ISA Trans; 2019 Feb; 85():200-213. PubMed ID: 30385035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Switching-Based Control Framework for Improved Task Performance in Teleoperation System With Asymmetric Time-Varying Delays.
    Zhai DH; Xia Y
    IEEE Trans Cybern; 2018 Feb; 48(2):625-638. PubMed ID: 28113354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human-inspired stable bilateral teleoperation of mobile manipulators.
    Santiago DD; Slawinski E; Mut V
    ISA Trans; 2019 Dec; 95():392-404. PubMed ID: 31153523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.
    Li Z; Su CY
    IEEE Trans Neural Netw Learn Syst; 2013 Sep; 24(9):1400-13. PubMed ID: 24808577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Neural Synchronization Control for Bilateral Teleoperation Systems With Time Delay and Backlash-Like Hysteresis.
    Wang H; Liu PX; Liu S
    IEEE Trans Cybern; 2017 Oct; 47(10):3018-3026. PubMed ID: 28092590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.