These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35408335)

  • 1. Comparative Analysis of Supervised Classifiers for the Evaluation of Sarcopenia Using a sEMG-Based Platform.
    Leone A; Rescio G; Manni A; Siciliano P; Caroppo A
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of a machine learning approach for diagnosing sarcopenia among Chinese community-dwelling older adults using sEMG-based data.
    Li N; Ou J; He H; He J; Zhang L; Peng Z; Zhong J; Jiang N
    J Neuroeng Rehabil; 2024 May; 21(1):69. PubMed ID: 38725065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sEMG-based Sarcopenia risk classification using empirical mode decomposition and machine learning algorithms.
    Kumar KS; Lee D; Jamsrandoj A; Soylu NN; Jung D; Kim J; Mun KR
    Math Biosci Eng; 2024 Jan; 21(2):2901-2921. PubMed ID: 38454712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-specific differences in the time-frequency representation of surface electromyographic data recorded during a submaximal cyclic back extension exercise: a promising biomarker to detect early signs of sarcopenia.
    Habenicht R; Ebenbichler G; Bonato P; Kollmitzer J; Ziegelbecker S; Unterlerchner L; Mair P; Kienbacher T
    J Neuroeng Rehabil; 2020 Jan; 17(1):8. PubMed ID: 31992323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Locomotion Classification for Different Terrains Using Machine Learning Techniques.
    Negi S; Negi PCBS; Sharma S; Sharma N
    Crit Rev Biomed Eng; 2020; 48(4):199-209. PubMed ID: 33463957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NLR, MLP, SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation.
    Dellacasa Bellingegni A; Gruppioni E; Colazzo G; Davalli A; Sacchetti R; Guglielmelli E; Zollo L
    J Neuroeng Rehabil; 2017 Aug; 14(1):82. PubMed ID: 28807038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning.
    Zhou B; Wang H; Hu F; Feng N; Xi H; Zhang Z; Tang H
    Comput Methods Programs Biomed; 2020 Sep; 193():105486. PubMed ID: 32402846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface EMG pattern recognition for real-time control of a wrist exoskeleton.
    Khokhar ZO; Xiao ZG; Menon C
    Biomed Eng Online; 2010 Aug; 9():41. PubMed ID: 20796304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Prevalence of the Sarcopenia Level Using Machine Learning Techniques: Case Study in Tijuana Baja California, Mexico.
    Castillo-Olea C; Garcia-Zapirain Soto B; Zuñiga C
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32183494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital.
    Castillo-Olea C; García-Zapirain Soto B; Carballo Lozano C; Zuñiga C
    Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31489909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors.
    Sun H; Zhang X; Zhao Y; Zhang Y; Zhong X; Fan Z
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29543737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine.
    Shi J; Cai Y; Zhu J; Zhong J; Wang F
    Med Biol Eng Comput; 2013 Apr; 51(4):417-27. PubMed ID: 23224795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-dimensional matrix image based feature extraction method for classification of sEMG: A comparative analysis based on SVM, KNN and RBF-NN.
    Wen T; Zhang Z; Qiu M; Zeng M; Luo W
    J Xray Sci Technol; 2017; 25(2):287-300. PubMed ID: 28269818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechatronics platform to study prosthetic hand control using EMG signals.
    Geethanjali P
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):765-71. PubMed ID: 27278475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanomyography is more sensitive than EMG in detecting age-related sarcopenia.
    Tian SL; Liu Y; Li L; Fu WJ; Peng CH
    J Biomech; 2010 Feb; 43(3):551-6. PubMed ID: 19945705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoelectric Signal Classification of Targeted Muscles Using Dictionary Learning.
    Yoo HJ; Park HJ; Lee B
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31126025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A preliminary investigation assessing the viability of classifying hand postures in seniors.
    Tavakolan M; Xiao ZG; Menon C
    Biomed Eng Online; 2011 Sep; 10():79. PubMed ID: 21906316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic detection of oral and pharyngeal phases in swallowing using classification algorithms and multichannel EMG.
    Roldan-Vasco S; Restrepo-Agudelo S; Valencia-Martinez Y; Orozco-Duque A
    J Electromyogr Kinesiol; 2018 Dec; 43():193-200. PubMed ID: 30384221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle force estimation from lower limb EMG signals using novel optimised machine learning techniques.
    Mokri C; Bamdad M; Abolghasemi V
    Med Biol Eng Comput; 2022 Mar; 60(3):683-699. PubMed ID: 35029815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.