These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35408350)

  • 1. Farm Vehicle Following Distance Estimation Using Deep Learning and Monocular Camera Images.
    Arabi S; Sharma A; Reyes M; Hamann C; Peek-Asa C
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dashcam video footage-based analysis of microsleep-related behaviors in truck collisions attributed to falling asleep at the wheel.
    Kumagai H; Kawaguchi K; Sawatari H; Kiyohara Y; Hayashi M; Shiomi T
    Accid Anal Prev; 2023 Jul; 187():107070. PubMed ID: 37060664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deep Learning Framework for Accurate Vehicle Yaw Angle Estimation from a Monocular Camera Based on Part Arrangement.
    Huang W; Li W; Tang L; Zhu X; Zou B
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling rear-end collisions including the role of driver's visibility and light truck vehicles using a nested logit structure.
    Abdel-Aty M; Abdelwahab H
    Accid Anal Prev; 2004 May; 36(3):447-56. PubMed ID: 15003590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vehicle Trajectory Estimation Based on Fusion of Visual Motion Features and Deep Learning.
    Qu L; Dailey MN
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory-level fog detection based on in-vehicle video camera with TensorFlow deep learning utilizing SHRP2 naturalistic driving data.
    Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105521. PubMed ID: 32408146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired driving: A case report. Pickup truck centerline crossover collision with medium-size bus on U.S. Highway 83, Concan, Texas, United States.
    McKay MP; Poland K; Karol D; Marshall R; Kaminski R
    Traffic Inj Prev; 2019; 20(sup2):S165-S168. PubMed ID: 31663778
    [No Abstract]   [Full Text] [Related]  

  • 8. Research on Vehicle Lane Change Warning Method Based on Deep Learning Image Processing.
    Zhang Q; Sun Z; Shu H
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medical investigation after a motorcoach strikes the rear of a tractor semitrailer parked on the highway; 13 fatal.
    McKay MP; Poland K; Barth TH
    Traffic Inj Prev; 2018; 19(sup2):S162-S164. PubMed ID: 30841801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety critical event prediction through unified analysis of driver and vehicle volatilities: Application of deep learning methods.
    Arvin R; Khattak AJ; Qi H
    Accid Anal Prev; 2021 Mar; 151():105949. PubMed ID: 33385957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing rear-end crash potential in urban locations based on vehicle-by-vehicle interactions, geometric characteristics and operational conditions.
    Dimitriou L; Stylianou K; Abdel-Aty MA
    Accid Anal Prev; 2018 Sep; 118():221-235. PubMed ID: 29502853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of work zone rear-end crash risk for different vehicle-following patterns.
    Weng J; Meng Q; Yan X
    Accid Anal Prev; 2014 Nov; 72():449-57. PubMed ID: 25150525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rear-end collision warning of connected automated vehicles based on a novel stochastic local multivehicle optimal velocity model.
    Wen J; Wu C; Zhang R; Xiao X; Nv N; Shi Y
    Accid Anal Prev; 2020 Dec; 148():105800. PubMed ID: 33128992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supervised Object-Specific Distance Estimation from Monocular Images for Autonomous Driving.
    Davydov Y; Chen WH; Lin YC
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-like car-following model for autonomous vehicles considering the cut-in behavior of other vehicles in mixed traffic.
    Fu R; Li Z; Sun Q; Wang C
    Accid Anal Prev; 2019 Nov; 132():105260. PubMed ID: 31442924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of vehicle model and driver behavior on risk.
    Wenzel TP; Ross M
    Accid Anal Prev; 2005 May; 37(3):479-94. PubMed ID: 15784202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety.
    Jeong E; Oh C; Lee S
    Accid Anal Prev; 2017 Jul; 104():115-124. PubMed ID: 28499140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of an Estimator Using the Artificial Neural Network Technique to Characterise the Braking of a Motor Vehicle.
    Garrosa M; Olmeda E; Díaz V; Mendoza-Petit MF
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the safety benefits of vehicles' advanced driver assistance, connectivity and low level automation systems.
    Yue L; Abdel-Aty M; Wu Y; Wang L
    Accid Anal Prev; 2018 Aug; 117():55-64. PubMed ID: 29654988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous commercial driver's traffic violations and freight truck-involved crashes on mainlines of expressway.
    Hong J; Park J; Lee G; Park D
    Accid Anal Prev; 2019 Oct; 131():327-335. PubMed ID: 31377496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.