These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 35408376)

  • 1. SMART SKY EYE System for Preliminary Structural Safety Assessment of Buildings Using Unmanned Aerial Vehicles.
    Bae J; Lee J; Jang A; Ju YK; Park MJ
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threats from and Countermeasures for Unmanned Aerial and Underwater Vehicles.
    Khawaja W; Semkin V; Ratyal NI; Yaqoob Q; Gul J; Guvenc I
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quality-of-Service-Centric Design and Analysis of Unmanned Aerial Vehicles.
    Jha SK; Prakash S; Rathore RS; Mahmud M; Kaiwartya O; Lloret J
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Path planning optimization in unmanned aerial vehicles using meta-heuristic algorithms: a systematic review.
    Yahia HS; Mohammed AS
    Environ Monit Assess; 2022 Oct; 195(1):30. PubMed ID: 36282405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle.
    Kim IH; Jeon H; Baek SC; Hong WH; Jung HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of Cracks in Concrete Structures Using an Unmanned Aerial Vehicle.
    Woo HJ; Seo DM; Kim MS; Park MS; Hong WH; Baek SC
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal path planning of Unmanned Aerial Vehicles (UAVs) for targets touring: Geometric and arc parameterization approaches.
    Forkan M; Rizvi MM; Chowdhury MAM
    PLoS One; 2022; 17(10):e0276105. PubMed ID: 36240139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Intelligent Human-Unmanned Aerial Vehicle Interaction Approach in Real Time Based on Machine Learning Using Wearable Gloves.
    Müezzinoğlu T; Karaköse M
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33806388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Path Planning Method with Perception Optimization Based on Sky Scanning for UAVs.
    Yuan S; Ota K; Dong M; Zhao J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bridge Crack Inspection Efficiency of an Unmanned Aerial Vehicle System with a Laser Ranging Module.
    Kao SP; Wang FL; Lin JS; Tsai J; Chu YD; Hung PS
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unmanned aerial vehicles in construction and worker safety.
    Howard J; Murashov V; Branche CM
    Am J Ind Med; 2018 Jan; 61(1):3-10. PubMed ID: 29027244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coverage Path Planning Methods Focusing on Energy Efficient and Cooperative Strategies for Unmanned Aerial Vehicles.
    Fevgas G; Lagkas T; Argyriou V; Sarigiannidis P
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unmanned Aerial Vehicle Propagation Channel over Vegetation and Lake Areas: First- and Second-Order Statistical Analysis.
    Leite DL; Alsina PJ; de Medeiros Campos MM; de Sousa VA; de Medeiros AAM
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cost-Effective System for Aerial 3D Thermography of Buildings.
    Daffara C; Muradore R; Piccinelli N; Gaburro N; de Rubeis T; Ambrosini D
    J Imaging; 2020 Aug; 6(8):. PubMed ID: 34460691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive Investigation of Unmanned Aerial Vehicles (UAVs): An In-Depth Analysis of Avionics Systems.
    Osmani K; Schulz D
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous UAV System for Cleaning Insulators in Power Line Inspection and Maintenance.
    Lopez Lopez R; Batista Sanchez MJ; Perez Jimenez M; Arrue BC; Ollero A
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle.
    Morales J; Castelo I; Serra R; Lima PU; Basiri M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Methods for Determining Shallow Waterbody Depths Based on Images Taken by Unmanned Aerial Vehicles.
    Specht M; Wiśniewska M; Stateczny A; Specht C; Szostak B; Lewicka O; Stateczny M; Widźgowski S; Halicki A
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.