BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35408702)

  • 21. Proteomic Analysis of the Effect of Inorganic and Organic Chemicals on Silver Nanoparticles in Wheat.
    Jhanzab HM; Razzaq A; Bibi Y; Yasmeen F; Yamaguchi H; Hitachi K; Tsuchida K; Komatsu S
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30769865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.).
    Li R; He J; Xie H; Wang W; Bose SK; Sun Y; Hu J; Yin H
    Int J Biol Macromol; 2019 Apr; 126():91-100. PubMed ID: 30557637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns.
    Gupta SD; Agarwal A; Pradhan S
    Ecotoxicol Environ Saf; 2018 Oct; 161():624-633. PubMed ID: 29933132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Ecotoxicological effects of oxytetracycline on wheat (Triticum aestivum) based on seed germination and seedling development].
    An J; Zhou QX; Liu WT
    Huan Jing Ke Xue; 2009 Oct; 30(10):3022-7. PubMed ID: 19968125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology.
    Yasur J; Rani PU
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):8636-48. PubMed ID: 23702569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification.
    Du W; Yang J; Peng Q; Liang X; Mao H
    Chemosphere; 2019 Jul; 227():109-116. PubMed ID: 30986592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of the suspension of Ag-incorporated TiO2 nanoparticles (Ag-TiO2 NPs) on certain growth, physiology and phytotoxicity parameters in spinach seedlings.
    Gordillo-Delgado F; Zuluaga-Acosta J; Restrepo-Guerrero G
    PLoS One; 2020; 15(12):e0244511. PubMed ID: 33373403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A germination-related gene encoding a serine carboxypeptidase is expressed during the differentiation of the vascular tissue in wheat grains and seedlings.
    Domínguez F; González MC; Cejudo FJ
    Planta; 2002 Sep; 215(5):727-34. PubMed ID: 12244437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functionalized-ZnO-Nanoparticle Seed Treatments to Enhance Growth and Zn Content of Wheat ( Triticum aestivum) Seedlings.
    Elhaj Baddar Z; Unrine JM
    J Agric Food Chem; 2018 Nov; 66(46):12166-12178. PubMed ID: 30421919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecotoxicological effects of typical personal care products on seed germination and seedling development of wheat (Triticum aestivum L.).
    An J; Zhou Q; Sun Y; Xu Z
    Chemosphere; 2009 Sep; 76(10):1428-34. PubMed ID: 19631961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phyllanthus emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity.
    Kannaujia R; Srivastava CM; Prasad V; Singh BN; Pandey V
    Plant Physiol Biochem; 2019 Sep; 142():460-471. PubMed ID: 31425972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity.
    Li Y; Liang L; Li W; Ashraf U; Ma L; Tang X; Pan S; Tian H; Mo Z
    J Nanobiotechnology; 2021 Mar; 19(1):75. PubMed ID: 33731120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pure anatase and rutile + anatase nanoparticles differently affect wheat seedlings.
    Silva S; Oliveira H; Craveiro SC; Calado AJ; Santos C
    Chemosphere; 2016 May; 151():68-75. PubMed ID: 26928332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings.
    Prakash MG; Chung IM
    Acta Biol Hung; 2016 Sep; 67(3):286-96. PubMed ID: 27630051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biogenic synthesis of silver nanoparticles using cyanobacterium
    Singh Y; Kaushal S; Sodhi RS
    Nanoscale Adv; 2020 Sep; 2(9):3972-3982. PubMed ID: 36132754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene.
    Zhu J; Zou Z; Shen Y; Li J; Shi S; Han S; Zhan X
    Environ Pollut; 2019 Apr; 247():108-117. PubMed ID: 30669078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative proteomic analysis of engineered and bio synthesized silver nanoparticles on soybean seedlings.
    Mustafa G; Hasan M; Yamaguchi H; Hitachi K; Tsuchida K; Komatsu S
    J Proteomics; 2020 Jul; 224():103833. PubMed ID: 32450145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative transcriptomic and metabolic profiling provides insight into the mechanism by which the autophagy inhibitor 3-MA enhances salt stress sensitivity in wheat seedlings.
    Yue J; Wang Y; Jiao J; Wang H
    BMC Plant Biol; 2021 Dec; 21(1):577. PubMed ID: 34872497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants.
    Zafar H; Ali A; Zia M
    Appl Biochem Biotechnol; 2017 Jan; 181(1):365-378. PubMed ID: 27562818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress.
    Mustafa G; Sakata K; Komatsu S
    J Proteomics; 2016 Oct; 148():113-25. PubMed ID: 27469891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.