BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 35408800)

  • 21. Signals regulating myelination in peripheral nerves and the Schwann cell response to injury.
    Glenn TD; Talbot WS
    Curr Opin Neurobiol; 2013 Dec; 23(6):1041-8. PubMed ID: 23896313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MiR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury.
    Zhou S; Gao R; Hu W; Qian T; Wang N; Ding G; Ding F; Yu B; Gu X
    J Cell Sci; 2014 Mar; 127(Pt 5):967-76. PubMed ID: 24413174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PGC-1α Inhibits Schwann Cell Dedifferentiation and Delays Peripheral Nerve Degeneration by Targeting PON1.
    Zou Y; Wu S; Wen F; Ge Y; Luo S
    Cell Mol Neurobiol; 2023 Oct; 43(7):3767-3781. PubMed ID: 37526811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. miR-221-3p Inhibits Schwann Cell Myelination.
    Zhao L; Yuan Y; Li P; Pan J; Qin J; Liu Y; Zhang Y; Tian F; Yu B; Zhou S
    Neuroscience; 2018 May; 379():239-245. PubMed ID: 29577996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FOSL1 modulates Schwann cell responses in the wound microenvironment and regulates peripheral nerve regeneration.
    Chen Q; Zhang L; Zhang F; Yi S
    J Biol Chem; 2023 Dec; 299(12):105444. PubMed ID: 37949219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair.
    Quintes S; Brinkmann BG; Ebert M; Fröb F; Kungl T; Arlt FA; Tarabykin V; Huylebroeck D; Meijer D; Suter U; Wegner M; Sereda MW; Nave KA
    Nat Neurosci; 2016 Aug; 19(8):1050-1059. PubMed ID: 27294512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dysregulated miR-29a-3p/PMP22 Modulates Schwann Cell Proliferation and Migration During Peripheral Nerve Regeneration.
    Shen Y; Cheng Z; Chen S; Zhang Y; Chen Q; Yi S
    Mol Neurobiol; 2022 Feb; 59(2):1058-1072. PubMed ID: 34837628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP release through lysosomal exocytosis from peripheral nerves: the effect of lysosomal exocytosis on peripheral nerve degeneration and regeneration after nerve injury.
    Jung J; Jo HW; Kwon H; Jeong NY
    Biomed Res Int; 2014; 2014():936891. PubMed ID: 25101301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Schwann cell-enriched circular RNA circ-Ankib1 regulates Schwann cell proliferation following peripheral nerve injury.
    Mao S; Zhang S; Zhou S; Huang T; Feng W; Gu X; Yu B
    FASEB J; 2019 Nov; 33(11):12409-12424. PubMed ID: 31415184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of lncRNA H19 on nerve degeneration and regeneration after sciatic nerve injury in rats.
    Li Y; Cai M; Feng Y; Yung B; Wang Y; Gao N; Xu X; Zhang H; Huang H; Yao D
    Dev Neurobiol; 2022 Jan; 82(1):98-111. PubMed ID: 34818452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Transcription Factor TFCP2L1 is Associated with Myelination via miR708-5p Regulation in the Peripheral Nerve System.
    Sohn EJ; Nam YK
    Neurochem Res; 2022 Feb; 47(2):434-445. PubMed ID: 34581937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of the V-ATPase subunit ATP6V0D2 and its role in demyelination after peripheral nerve injury.
    Shin YK; Jo YR; Lee SH; Park HT; Shin JE
    Biochem Biophys Res Commun; 2023 Feb; 646():1-7. PubMed ID: 36689911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. p38 MAPK activation promotes denervated Schwann cell phenotype and functions as a negative regulator of Schwann cell differentiation and myelination.
    Yang DP; Kim J; Syed N; Tung YJ; Bhaskaran A; Mindos T; Mirsky R; Jessen KR; Maurel P; Parkinson DB; Kim HA
    J Neurosci; 2012 May; 32(21):7158-68. PubMed ID: 22623660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of Non-coding RNAs in Axon Regeneration after Peripheral Nerve Injury.
    Liu M; Li P; Jia Y; Cui Q; Zhang K; Jiang J
    Int J Biol Sci; 2022; 18(8):3435-3446. PubMed ID: 35637962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. KLF7-transfected Schwann cell graft transplantation promotes sciatic nerve regeneration.
    Wang Y; Li WY; Jia H; Zhai FG; Qu WR; Cheng YX; Liu YC; Deng LX; Guo SF; Jin ZS
    Neuroscience; 2017 Jan; 340():319-332. PubMed ID: 27826105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Osteopontin: a novel axon-regulated Schwann cell gene.
    Jander S; Bussini S; Neuen-Jacob E; Bosse F; Menge T; Müller HW; Stoll G
    J Neurosci Res; 2002 Jan; 67(2):156-66. PubMed ID: 11782959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolism-related MOGS Gene is Dysregulated After Peripheral Nerve Injury and Negatively Regulates Schwann Cell Plasticity.
    Zhang Y; Yang M; Shen Y; Yi S; Wang X
    J Mol Neurosci; 2022 Jun; 72(6):1402-1412. PubMed ID: 35575968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transgenic Schwann cells overexpressing POU6F1 promote sciatic nerve regeneration within acellular nerve allografts.
    Li WY; Li ZG; Fu XM; Wang XY; Lv ZX; Sun P; Zhu XF; Wang Y
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317259
    [No Abstract]   [Full Text] [Related]  

  • 39. Short-term low-frequency electrical stimulation enhanced remyelination of injured peripheral nerves by inducing the promyelination effect of brain-derived neurotrophic factor on Schwann cell polarization.
    Wan L; Xia R; Ding W
    J Neurosci Res; 2010 Sep; 88(12):2578-87. PubMed ID: 20648648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration.
    He X; Zhang L; Queme LF; Liu X; Lu A; Waclaw RR; Dong X; Zhou W; Kidd G; Yoon SO; Buonanno A; Rubin JB; Xin M; Nave KA; Trapp BD; Jankowski MP; Lu QR
    Nat Med; 2018 Mar; 24(3):338-351. PubMed ID: 29431744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.