BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35408822)

  • 1. Laccases and Tyrosinases in Organic Synthesis.
    Martínková L; Křístková B; Křen V
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in the use of tyrosinase and laccase in environmental applications.
    Ba S; Vinoth Kumar V
    Crit Rev Biotechnol; 2017 Nov; 37(7):819-832. PubMed ID: 28330374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosinase and laccase-producing Bacillus aryabhattai TFG5 and its role in the polymerization of phenols.
    Muniraj I; Shameer S; Uthandi S
    BMC Microbiol; 2021 Jun; 21(1):187. PubMed ID: 34157975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of bacterial tyrosinases in organic synthesis.
    Agunbiade M; Le Roes-Hill M
    World J Microbiol Biotechnol; 2021 Nov; 38(1):2. PubMed ID: 34817696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-occurrence of the multicopper oxidases tyrosinase and laccase in lichens in sub-order peltigerineae.
    Laufer Z; Beckett RP; Minibayeva FV
    Ann Bot; 2006 Nov; 98(5):1035-42. PubMed ID: 16950829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications.
    Jeon JR; Baldrian P; Murugesan K; Chang YS
    Microb Biotechnol; 2012 May; 5(3):318-32. PubMed ID: 21791030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laccase catalysis for the synthesis of bioactive compounds.
    Kudanga T; Nemadziva B; Le Roes-Hill M
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):13-33. PubMed ID: 27872999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenol-oxidizing enzymes: mechanisms and applications in biosensors.
    Peter MG; Wollenberger U
    EXS; 1997; 80():63-82. PubMed ID: 9002207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases.
    Sanchez-Amat A; Solano F
    Biochem Biophys Res Commun; 1997 Nov; 240(3):787-92. PubMed ID: 9398646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial enzymes for oxidation of organic molecules.
    Sariaslani FS
    Crit Rev Biotechnol; 1989; 9(3):171-257. PubMed ID: 2514043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomedical and Pharmaceutical-Related Applications of Laccases.
    Mohit E; Tabarzad M; Faramarzi MA
    Curr Protein Pept Sci; 2020; 21(1):78-98. PubMed ID: 31660814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant capacity of phenolic compounds on human cell lines as affected by grape-tyrosinase and Botrytis-laccase oxidation.
    Riebel M; Sabel A; Claus H; Xia N; Li H; König H; Decker H; Fronk P
    Food Chem; 2017 Aug; 229():779-789. PubMed ID: 28372244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laccases: blue enzymes for green chemistry.
    Riva S
    Trends Biotechnol; 2006 May; 24(5):219-26. PubMed ID: 16574262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the mechanism of laccase and tyrosinase in wheat bread making.
    Selinheimo E; Autio K; Kruus K; Buchert J
    J Agric Food Chem; 2007 Jul; 55(15):6357-65. PubMed ID: 17602567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic oxidative transformation of phenols by Trametes trogii laccases.
    Chakroun H; Bouaziz M; Dhouib A; Sayadi S
    Environ Technol; 2012 Sep; 33(16-18):1977-85. PubMed ID: 23240190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular tyrosinase from the fungus Trichoderma reesei shows product inhibition and different inhibition mechanism from the intracellular tyrosinase from Agaricus bisporus.
    Gasparetti C; Nordlund E; Jänis J; Buchert J; Kruus K
    Biochim Biophys Acta; 2012 Apr; 1824(4):598-607. PubMed ID: 22266403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of phenolic compounds by the bifunctional catalase-phenol oxidase (CATPO) from Scytalidium thermophilum.
    Koclar Avci G; Coruh N; Bolukbasi U; Ogel ZB
    Appl Microbiol Biotechnol; 2013 Jan; 97(2):661-72. PubMed ID: 22370948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of combined cross-linked laccase and tyrosinase aggregates transforming acetaminophen as a model phenolic compound in wastewaters.
    Ba S; Haroune L; Cruz-Morató C; Jacquet C; Touahar IE; Bellenger JP; Legault CY; Jones JP; Cabana H
    Sci Total Environ; 2014 Jul; 487():748-55. PubMed ID: 24867811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to enjoy laccases.
    Pezzella C; Guarino L; Piscitelli A
    Cell Mol Life Sci; 2015 Mar; 72(5):923-40. PubMed ID: 25577278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic aspects of the tyrosinase oxidation of hydroquinone.
    Ramsden CA; Riley PA
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2463-4. PubMed ID: 24767847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.