These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 35408935)

  • 1. TKTL1 Knockdown Impairs Hypoxia-Induced Glucose-6-phosphate Dehydrogenase and Glyceraldehyde-3-phosphate Dehydrogenase Overexpression.
    Baptista I; Karakitsou E; Cazier JB; Günther UL; Marin S; Cascante M
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Suppression of Transketolase-Like Protein 1 (TKTL1) Sensitizes Glioma Cells to Hypoxia and Ionizing Radiation.
    Heller S; Maurer GD; Wanka C; Hofmann U; Luger AL; Bruns I; Steinbach JP; Rieger J
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30044385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and (13)C-metabolic flux analysis.
    Ahn WS; Crown SB; Antoniewicz MR
    Metab Eng; 2016 Sep; 37():72-78. PubMed ID: 27174718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells.
    Xu X; Zur Hausen A; Coy JF; Löchelt M
    Int J Cancer; 2009 Mar; 124(6):1330-7. PubMed ID: 19065656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation.
    Tang YC; Hsiao JR; Jiang SS; Chang JY; Chu PY; Liu KJ; Fang HL; Lin LM; Chen HH; Huang YW; Chen YT; Tsai FY; Lin SF; Chuang YJ; Kuo CC
    Theranostics; 2021; 11(11):5232-5247. PubMed ID: 33859744
    [No Abstract]   [Full Text] [Related]  

  • 6. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver.
    Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M
    Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockdown of TKTL1 additively complements cisplatin-induced cytotoxicity in nasopharyngeal carcinoma cells by regulating the levels of NADPH and ribose-5-phosphate.
    Dong Y; Wang M
    Biomed Pharmacother; 2017 Jan; 85():672-678. PubMed ID: 27916418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of IRE1 modifies hypoxic regulation of G6PD, GPI, TKT, TALDO1, PGLS and RPIA genes expression in U87 glioma cells.
    Minchenko OH; Garmash IA; Minchenko DO; Kuznetsova AY; Ratushna OO
    Ukr Biochem J; 2017; 89(1):38-49. PubMed ID: 29236388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer.
    Langbein S; Frederiks WM; zur Hausen A; Popa J; Lehmann J; Weiss C; Alken P; Coy JF
    Int J Cancer; 2008 Jun; 122(11):2422-8. PubMed ID: 18302154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose-6-phosphate dehydrogenase and transketolase: Key factors in breast cancer progression and therapy.
    Zhen X; Zhang M; Hao S; Sun J
    Biomed Pharmacother; 2024 Jul; 176():116935. PubMed ID: 38876050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silencing of TKTL1 by siRNA inhibits proliferation of human gastric cancer cells in vitro and in vivo.
    Yuan W; Wu S; Guo J; Chen Z; Ge J; Yang P; Hu B; Chen Z
    Cancer Biol Ther; 2010 May; 9(9):710-6. PubMed ID: 20200485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transketolase in human Müller cells is critical to resist light stress through the pentose phosphate and NRF2 pathways.
    Chen Y; Zhang T; Zeng S; Xu R; Jin K; Coorey NJ; Wang Y; Wang K; Lee SR; Yam M; Zhu M; Chang A; Fan X; Zhang M; Du J; Gillies MC; Zhu L
    Redox Biol; 2022 Aug; 54():102379. PubMed ID: 35779441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transketolase-like 1 ectopic expression is associated with DNA hypomethylation and induces the Warburg effect in melanoma cells.
    Jayachandran A; Lo PH; Chueh AC; Prithviraj P; Molania R; Davalos-Salas M; Anaka M; Walkiewicz M; Cebon J; Behren A
    BMC Cancer; 2016 Feb; 16():134. PubMed ID: 26907172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A key role for transketolase-like 1 in tumor metabolic reprogramming.
    Diaz-Moralli S; Aguilar E; Marin S; Coy JF; Dewerchin M; Antoniewicz MR; Meca-Cortés O; Notebaert L; Ghesquière B; Eelen G; Thomson TM; Carmeliet P; Cascante M
    Oncotarget; 2016 Aug; 7(32):51875-51897. PubMed ID: 27391434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma.
    Ahmad F; Dixit D; Sharma V; Kumar A; Joshi SD; Sarkar C; Sen E
    Cell Death Dis; 2016 May; 7(5):e2213. PubMed ID: 27148686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of neuronal differentiation by carbon monoxide: Role of pentose phosphate pathway.
    Almeida AS; Soares NL; Sequeira CO; Pereira SA; Sonnewald U; Vieira HLA
    Redox Biol; 2018 Jul; 17():338-347. PubMed ID: 29793167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A δ38 deletion variant of human transketolase as a model of transketolase-like protein 1 exhibits no enzymatic activity.
    Schneider S; Lüdtke S; Schröder-Tittmann K; Wechsler C; Meyer D; Tittmann K
    PLoS One; 2012; 7(10):e48321. PubMed ID: 23118983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose is necessary for stabilization of hypoxia-inducible factor-1alpha under hypoxia: contribution of the pentose phosphate pathway to this stabilization.
    Osada-Oka M; Hashiba Y; Akiba S; Imaoka S; Sato T
    FEBS Lett; 2010 Jul; 584(14):3073-9. PubMed ID: 20621833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic reprogramming and redox adaptation in sorafenib-resistant leukemia cells: detected by untargeted metabolomics and stable isotope tracing analysis.
    You X; Jiang W; Lu W; Zhang H; Yu T; Tian J; Wen S; Garcia-Manero G; Huang P; Hu Y
    Cancer Commun (Lond); 2019 Apr; 39(1):17. PubMed ID: 30947742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.