These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35409039)

  • 1. Comparison of Pore Structures of Cellulose-Based Activated Carbon Fibers and Their Applications for Electrode Materials.
    Kim JH; Jung SC; Lee HM; Kim BJ
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesopore-Rich Activated Carbons for Electrical Double-Layer Capacitors by Optimal Activation Condition.
    Lee HM; An KH; Park SJ; Kim BJ
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31013823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Study on Superior Mesoporous Activated Carbons for Ultra Power Density Supercapacitor from Biomass Precursors.
    Bang JH; Lee BH; Choi YC; Lee HM; Kim BJ
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated Carbons from Thermoplastic Precursors and Their Energy Storage Applications.
    Lee HM; Kim KW; Park YK; An KH; Park SJ; Kim BJ
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31248161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Promising Polymer Blend Electrolytes Based on Chitosan: Methyl Cellulose for EDLC Application with High Specific Capacitance and Energy Density.
    Aziz SB; Hamsan MH; Abdullah RM; Kadir MFZ
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31323966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Behavior of Viscose-Based Supercapacitor Electrodes Activated by KOH, H
    Breitenbach S; Duchoslav J; Mardare AI; Unterweger C; Stifter D; Hassel AW; Fürst C
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Modification Effect and Electrochemical Performance of LiOH-High Surface Activated Carbon as a Cathode Material in EDLC.
    Otgonbayar Z; Yang S; Kim IJ; Oh WC
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications.
    Du X; Zhao W; Wang Y; Wang C; Chen M; Qi T; Hua C; Ma M
    Bioresour Technol; 2013 Dec; 149():31-7. PubMed ID: 24084201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bamboo-Based Mesoporous Activated Carbon for High-Power-Density Electric Double-Layer Capacitors.
    Kim JH; Lee HM; Jung SC; Chung DC; Kim BJ
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.
    Im JS; Woo SW; Jung MJ; Lee YS
    J Colloid Interface Sci; 2008 Nov; 327(1):115-9. PubMed ID: 18771778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea.
    Yaglikci S; Gokce Y; Yagmur E; Aktas Z
    Environ Technol; 2020 Jan; 41(1):36-48. PubMed ID: 30681935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activated carbon monoliths derived from bacterial cellulose/polyacrylonitrile composite as new generation electrode materials in EDLC.
    Dobashi A; Maruyama J; Shen Y; Nandi M; Uyama H
    Carbohydr Polym; 2018 Nov; 200():381-390. PubMed ID: 30177178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waste-Wood-Isolated Cellulose-Based Activated Carbon Paper Electrodes with Graphene Nanoplatelets for Flexible Supercapacitors.
    Lee JJ; Chae SH; Lee JJ; Lee MS; Yoon W; Kwac LK; Kim HG; Shin HK
    Molecules; 2023 Nov; 28(23):. PubMed ID: 38067551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterisation of activated carbon from waste tea by physical activation using steam.
    Zhou J; Luo A; Zhao Y
    J Air Waste Manag Assoc; 2018 Dec; 68(12):1269-1277. PubMed ID: 29667515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Study of Plasticized Solid Polymer Blend Electrolytes Based on Natural Polymers and Their Application for Energy Storage EDLC Devices.
    Dannoun EMA; Aziz SB; Brza MA; M Nofal M; Asnawi ASFM; Yusof YM; Al-Zangana S; Hamsan MH; Kadir MFZ; Woo HJ
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33138114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of activated biomass carbon from tea leaf for supercapacitor applications.
    Thirumal V; Yuvakkumar R; Ravi G; Dineshkumar G; Ganesan M; Alotaibi SH; Velauthapillai D
    Chemosphere; 2022 Mar; 291(Pt 2):132931. PubMed ID: 34793843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water.
    Feng C; Chen YA; Yu CP; Hou CH
    Chemosphere; 2018 Oct; 208():285-293. PubMed ID: 29883863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Temperature and Pore Structure on High Surface Area-Activated Carbon Obtained from Peanut Shells.
    Kalpana D; Lee YS
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2950-5. PubMed ID: 27455740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of EDLC Capacitance with Physical Properties of Polyethylene Terephthalate Added Pitch-Based Activated Carbon.
    Kwak CH; Kim D; Bai BC
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on pore structure regulation of activated carbon derived from sargassum and its application in supercapacitor.
    Li S; Tan X; Li H; Gao Y; Wang Q; Li G; Guo M
    Sci Rep; 2022 Jun; 12(1):10106. PubMed ID: 35710583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.