BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 35409048)

  • 21. The Influence of Intracellular Glutathione Levels on the Induction of Nrf2-Mediated Gene Expression by α-Dicarbonyl Precursors of Advanced Glycation End Products.
    Zheng L; van Dongen KCW; Bakker W; Miro Estruch I; Rietjens IMCM
    Nutrients; 2022 Mar; 14(7):. PubMed ID: 35405976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methylglyoxal-Derived Advanced Glycation Endproducts in Multiple Sclerosis.
    Wetzels S; Wouters K; Schalkwijk CG; Vanmierlo T; Hendriks JJ
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28212304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal.
    Shen Y; Xu Z; Sheng Z
    Food Chem; 2017 Feb; 216():153-60. PubMed ID: 27596404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification of chickpea cystatin by reactive dicarbonyl species: Glycation, oxidation and aggregation.
    Bhat SA; Bhat WF; Afsar M; Khan MS; Al-Bagmi MS; Bano B
    Arch Biochem Biophys; 2018 Jul; 650():103-115. PubMed ID: 29775569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein Glycation in Plants-An Under-Researched Field with Much Still to Discover.
    Rabbani N; Al-Motawa M; Thornalley PJ
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Edaravone protected human brain microvascular endothelial cells from methylglyoxal-induced injury by inhibiting AGEs/RAGE/oxidative stress.
    Li W; Xu H; Hu Y; He P; Ni Z; Xu H; Zhang Z; Dai H
    PLoS One; 2013; 8(9):e76025. PubMed ID: 24098758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hormetic potential of methylglyoxal, a side-product of glycolysis, in switching tumours from growth to death.
    Nokin MJ; Durieux F; Bellier J; Peulen O; Uchida K; Spiegel DA; Cochrane JR; Hutton CA; Castronovo V; Bellahcène A
    Sci Rep; 2017 Sep; 7(1):11722. PubMed ID: 28916747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased methylglyoxal formation in plasma and tissues during a glucose tolerance test is derived from exogenous glucose.
    Zhang X; Scheijen JLJM; Stehouwer CDA; Wouters K; Schalkwijk CG
    Clin Sci (Lond); 2023 Apr; 137(8):697-706. PubMed ID: 36661051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Associations of dicarbonyl stress with complement activation: the CODAM study.
    Xin Y; Hertle E; van der Kallen CJH; Schalkwijk CG; Stehouwer CDA; van Greevenbroek MMJ
    Diabetologia; 2020 May; 63(5):1032-1042. PubMed ID: 31993713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of Methylglyoxal-Induced Histone H1 N
    Yang L; Li X; Wu Z; Feng C; Zhang T; Dai S; Dong Q
    J Agric Food Chem; 2018 Jun; 66(23):5812-5820. PubMed ID: 29758984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parkinsonism-Associated Protein DJ-1 Is an Antagonist, Not an Eraser, for Protein Glycation.
    Gao Q; Jacob-Dolan JW; Scheck RA
    Biochemistry; 2023 Mar; 62(6):1181-1190. PubMed ID: 36820886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tannerella forsythia-produced methylglyoxal causes accumulation of advanced glycation endproducts to trigger cytokine secretion in human monocytes.
    Settem RP; Honma K; Shankar M; Li M; LaMonte M; Xu D; Genco RJ; Browne RW; Sharma A
    Mol Oral Microbiol; 2018 Aug; 33(4):292-299. PubMed ID: 29573211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methylglyoxal, a highly reactive dicarbonyl compound, as a threat for blood brain barrier integrity.
    Berends E; van Oostenbrugge RJ; Foulquier S; Schalkwijk CG
    Fluids Barriers CNS; 2023 Oct; 20(1):75. PubMed ID: 37875994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methylglyoxal-induced modification of arginine residues decreases the activity of NADPH-generating enzymes.
    Morgan PE; Sheahan PJ; Pattison DI; Davies MJ
    Free Radic Biol Med; 2013 Aug; 61():229-42. PubMed ID: 23579026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders.
    Saeed M; Kausar MA; Singh R; Siddiqui AJ; Akhter A
    Curr Protein Pept Sci; 2020; 21(9):846-859. PubMed ID: 32368974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative Chemoproteomic Profiling of Protein Cross-Links Induced by Methylglyoxal.
    Chen X; Liu Y; Kong L; Wen Z; Wang W; Wang C
    ACS Chem Biol; 2022 Aug; 17(8):2010-2017. PubMed ID: 35797239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical modification of proteins by methylglyoxal.
    Degenhardt TP; Thorpe SR; Baynes JW
    Cell Mol Biol (Noisy-le-grand); 1998 Nov; 44(7):1139-45. PubMed ID: 9846896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Widespread, Reversible Cysteine Modification by Methylglyoxal Regulates Metabolic Enzyme Function.
    Coukos JS; Lee CW; Pillai KS; Liu KJ; Moellering RE
    ACS Chem Biol; 2023 Jan; 18(1):91-101. PubMed ID: 36562291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases.
    Schalkwijk CG; Stehouwer CDA
    Physiol Rev; 2020 Jan; 100(1):407-461. PubMed ID: 31539311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methylglyoxal induces chromosomal instability and mitotic dysfunction in lymphocytes.
    Donnellan L; Simpson B; Dhillon VS; Costabile M; Fenech M; Deo P
    Mutagenesis; 2021 Oct; 36(5):339-348. PubMed ID: 34297102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.