BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35409317)

  • 21. Fe(2+) binding on amyloid β-peptide promotes aggregation.
    Boopathi S; Kolandaivel P
    Proteins; 2016 Sep; 84(9):1257-74. PubMed ID: 27214008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal binding modes of Alzheimer's amyloid beta-peptide in insoluble aggregates and soluble complexes.
    Miura T; Suzuki K; Kohata N; Takeuchi H
    Biochemistry; 2000 Jun; 39(23):7024-31. PubMed ID: 10841784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complexation of copper ions with histidine-containing tripeptides immobilized on solid surfaces.
    Bi X; Yang KL
    Langmuir; 2007 Oct; 23(22):11067-73. PubMed ID: 17902718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The specificity of interaction of Zn(2+), Ni(2+) and Cu(2+) ions with the histidine-rich domain of the TjZNT1 ZIP family transporter.
    Potocki S; Valensin D; Kozlowski H
    Dalton Trans; 2014 Jul; 43(26):10215-23. PubMed ID: 24874820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. African Viper Poly-His Tag Peptide Fragment Efficiently Binds Metal Ions and Is Folded into an α-Helical Structure.
    Watly J; Simonovsky E; Barbosa N; Spodzieja M; Wieczorek R; Rodziewicz-Motowidlo S; Miller Y; Kozlowski H
    Inorg Chem; 2015 Aug; 54(16):7692-702. PubMed ID: 26214303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zn(II) ions substantially perturb Cu(II) ion coordination in amyloid-β at physiological pH.
    Silva KI; Saxena S
    J Phys Chem B; 2013 Aug; 117(32):9386-94. PubMed ID: 23841511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Templated alkylation of hexahistidine with Baylis-Hillman esters.
    Liu XX; Melman A
    Chem Commun (Camb); 2013 Oct; 49(79):9042-4. PubMed ID: 23985693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidences for zinc (II) and copper (II) ion interactions with Mycobacterium leprae HSP18: Effect on its structure and chaperone function.
    Nandi SK; Chakraborty A; Panda AK; Kar RK; Bhunia A; Biswas A
    J Inorg Biochem; 2018 Nov; 188():62-75. PubMed ID: 30121399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unexpectedly Enhanced Solubility of Aromatic Amino Acids and Peptides in an Aqueous Solution of Divalent Transition-Metal Cations.
    Shi G; Dang Y; Pan T; Liu X; Liu H; Li S; Zhang L; Zhao H; Li S; Han J; Tai R; Zhu Y; Li J; Ji Q; Mole RA; Yu D; Fang H
    Phys Rev Lett; 2016 Dec; 117(23):238102. PubMed ID: 27982649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A tetraphenylethylene-based fluorescent chemosensor for Cu2+ in aqueous solution and its potential application to detect histidine.
    Zeng Y; Zhang G; Zhang D
    Anal Sci; 2015; 31(3):191-5. PubMed ID: 25765273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient strategy to assemble water soluble histidine-perylene diimide and graphene oxide for the detection of PPi in physiological conditions and in vitro.
    Muthuraj B; Mukherjee S; Chowdhury SR; Patra CR; Iyer PK
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):636-644. PubMed ID: 26764162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper(II) and zinc(II) ion binding properties of a MAP type branched ligand with histidines as surface functionalities.
    Kolozsi A; Vosekalna I; Martinek T; Larsen E; Gyurcsik B
    Dalton Trans; 2009 Aug; (29):5647-54. PubMed ID: 20449077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic and structural role of a metal-free histidine residue in bovine Cu-Zn superoxide dismutase.
    Toyama A; Takahashi Y; Takeuchi H
    Biochemistry; 2004 Apr; 43(16):4670-9. PubMed ID: 15096035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of copper-, zinc-, manganese-, and cobalt-substituted dimeric heteropolyanions, [(alpha-XW9O33)2M3(H2O)3](n-) (n = 12, X =As(III), Sb(III), M = Cu(2+), Zn(2+); n = 10, X = Se(IV), Te(IV), M = Cu(2+) and [(alpha-AsW9O33)2WO(H2O)M2(H2O)2](10-) (M = Zn(2+), Mn(2+), Co(2+).
    Kortz U; Al-Kassem NK; Savelieff MG; Al Kadi NA; Sadakane M
    Inorg Chem; 2001 Aug; 40(18):4742-9. PubMed ID: 11511224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amino acid-functionalized chitosan beads for in vitro copper ions uptake in the presence of histidine.
    Taketa TB; Mahl CRA; Calais GB; Beppu MM
    Int J Biol Macromol; 2021 Oct; 188():421-431. PubMed ID: 34371051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histidine-rich branched peptides as Cu(II) and Zn(II) chelators with potential therapeutic application in Alzheimer's disease.
    Lakatos A; Gyurcsik B; Nagy NV; Csendes Z; Wéber E; Fülöp L; Kiss T
    Dalton Trans; 2012 Feb; 41(6):1713-26. PubMed ID: 22159144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dye/metal ion-based chemosensing ensemble towards l-histidine and l-lysine determination in water via different optical responses.
    Tavallali H; Espergham O; Deilamy-Rad G; Karimi MA; Rostami S; Rouhani-Savestani AR
    Anal Biochem; 2020 Sep; 604():113811. PubMed ID: 32622976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. "Naked-eye" detection of histidine by regulation of Cu(II) coordination modes.
    Folmer-Andersen JF; Lynch VM; Anslyn EV
    Chemistry; 2005 Sep; 11(18):5319-26. PubMed ID: 16003820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of backbones on the interaction of metal ions with deoxyribonucleic acid and peptide nucleic acid: A DFT study.
    Bhai S; Ganguly B
    J Mol Graph Model; 2019 Dec; 93():107445. PubMed ID: 31494536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A ratiometric fluorescent detection of Zn(II) in aqueous solutions using pyrene-appended histidine.
    Thirupathi P; Lee KH
    Bioorg Med Chem Lett; 2013 Dec; 23(24):6811-5. PubMed ID: 24200807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.