These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35409332)

  • 1. Cruciform DNA Structures Act as Legible Templates for Accelerating Homologous Recombination in Transgenic Animals.
    Ou-Yang H; Yang SH; Chen W; Yang SH; Cidem A; Sung LY; Chen CM
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence.
    Ishibashi R; Abe K; Ido N; Kitano S; Miyachi H; Toyoshima F
    Sci Rep; 2020 Aug; 10(1):14120. PubMed ID: 32839482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cas9/gRNA-mediated genome editing of yeast mitochondria and
    Yoo BC; Yadav NS; Orozco EM; Sakai H
    PeerJ; 2020; 8():e8362. PubMed ID: 31934513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
    Eschstruth A; Schneider-Maunoury S; Giudicelli F
    Genesis; 2020 Jan; 58(1):e23340. PubMed ID: 31571409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Generation of Large-Fragment Knock-In Mouse Models Using 2-Cell (2C)-Homologous Recombination (HR)-CRISPR.
    Gu B; Posfai E; Gertsenstein M; Rossant J
    Curr Protoc Mouse Biol; 2020 Mar; 10(1):e67. PubMed ID: 31912993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair.
    Auer TO; Duroure K; De Cian A; Concordet JP; Del Bene F
    Genome Res; 2014 Jan; 24(1):142-53. PubMed ID: 24179142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA.
    Liang X; Potter J; Kumar S; Ravinder N; Chesnut JD
    J Biotechnol; 2017 Jan; 241():136-146. PubMed ID: 27845164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci.
    Najah S; Saulnier C; Pernodet JL; Bury-Moné S
    BMC Biotechnol; 2019 Mar; 19(1):18. PubMed ID: 30894153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new inducible CRISPR-Cas9 system useful for genome editing and study of double-strand break repair in Candida glabrata.
    Maroc L; Fairhead C
    Yeast; 2019 Dec; 36(12):723-731. PubMed ID: 31423617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Screening for CRISPR-Directed Editing of the Drosophila Genome Using white Coconversion.
    Ge DT; Tipping C; Brodsky MH; Zamore PD
    G3 (Bethesda); 2016 Oct; 6(10):3197-3206. PubMed ID: 27543296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-induced double-strand breaks trigger recombination between homologous chromosome arms.
    Brunner E; Yagi R; Debrunner M; Beck-Schneider D; Burger A; Escher E; Mosimann C; Hausmann G; Basler K
    Life Sci Alliance; 2019 Jun; 2(3):. PubMed ID: 31196871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a CRISPR/Cas9 system in Entamoeba histolytica: proof of concept.
    Kangussu-Marcolino MM; Morgado P; Manna D; Yee H; Singh U
    Int J Parasitol; 2021 Feb; 51(2-3):193-200. PubMed ID: 33264648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids.
    Bowater RP; Bohálová N; Brázda V
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted integration in human cells through single crossover mediated by ZFN or CRISPR/Cas9.
    Liu X; Wang M; Qin Y; Shi X; Cong P; Chen Y; He Z
    BMC Biotechnol; 2018 Oct; 18(1):66. PubMed ID: 30340581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unpredicted central inversion in a sgRNA flanked by inverted repeats.
    Wang G; Sukumar S
    Mol Biol Rep; 2020 Aug; 47(8):6375-6378. PubMed ID: 32424520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative assessment of HR and NHEJ activities via CRISPR/Cas9-induced oligodeoxynucleotide-mediated DSB repair.
    Du J; Yin N; Xie T; Zheng Y; Xia N; Shang J; Chen F; Zhang H; Yu J; Liu F
    DNA Repair (Amst); 2018 Oct; 70():67-71. PubMed ID: 30212742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA barcoding reveals that injected transgenes are predominantly processed by homologous recombination in mouse zygote.
    Smirnov A; Fishman V; Yunusova A; Korablev A; Serova I; Skryabin BV; Rozhdestvensky TS; Battulin N
    Nucleic Acids Res; 2020 Jan; 48(2):719-735. PubMed ID: 31740957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the specificity and efficacy of CRISPR/CAS9 and gRNA through target specific DNA reporter.
    Zhang JH; Pandey M; Kahler JF; Loshakov A; Harris B; Dagur PK; Mo YY; Simonds WF
    J Biotechnol; 2014 Nov; 189():1-8. PubMed ID: 25193712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.