BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 3540963)

  • 1. Membrane association of proline dehydrogenase in Escherichia coli is redox dependent.
    Wood JM
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):373-7. PubMed ID: 3540963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of monoclonal antibodies to proline dehydrogenase from Escherichia coli K-12.
    Wood JM; Taylor KA; McClellan DJ; Lawrie GG; Krogsrud RL; Beveridge TJ
    Biochem Cell Biol; 1987 Jun; 65(6):507-13. PubMed ID: 3322326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
    Zhu W; Becker DF
    Biochemistry; 2003 May; 42(18):5469-77. PubMed ID: 12731889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy.
    Zhu W; Becker DF
    Biochemistry; 2005 Sep; 44(37):12297-306. PubMed ID: 16156643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro.
    Ostrovsky de Spicer P; O'Brien K; Maloy S
    J Bacteriol; 1991 Jan; 173(1):211-9. PubMed ID: 1987118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator.
    Ostrovsky de Spicer P; Maloy S
    Proc Natl Acad Sci U S A; 1993 May; 90(9):4295-8. PubMed ID: 8483946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proline dehydrogenase from Escherichia coli K12. Properties of the membrane-associated enzyme.
    Abrahamson JL; Baker LG; Stephenson JT; Wood JM
    Eur J Biochem; 1983 Jul; 134(1):77-82. PubMed ID: 6305659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence analysis identifies the proline dehydrogenase and delta 1-pyrroline-5-carboxylate dehydrogenase domains of the multifunctional Escherichia coli PutA protein.
    Ling M; Allen SW; Wood JM
    J Mol Biol; 1994 Nov; 243(5):950-6. PubMed ID: 7966312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the β3-α3 loop of the proline dehydrogenase domain in allosteric regulation of membrane association of proline utilization A.
    Zhu W; Haile AM; Singh RK; Larson JD; Smithen D; Chan JY; Tanner JJ; Becker DF
    Biochemistry; 2013 Jul; 52(26):4482-91. PubMed ID: 23713611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The PutA protein of Salmonella typhimurium catalyzes the two steps of proline degradation via a leaky channel.
    Surber MW; Maloy S
    Arch Biochem Biophys; 1998 Jun; 354(2):281-7. PubMed ID: 9637737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, DNA sequence analysis, and mutagenesis of a proline dehydrogenase gene (putA) from Bradyrhizobium japonicum.
    Straub PF; Reynolds PH; Althomsons S; Mett V; Zhu Y; Shearer G; Kohl DH
    Appl Environ Microbiol; 1996 Jan; 62(1):221-9. PubMed ID: 8572700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions.
    Becker DF; Thomas EA
    Biochemistry; 2001 Apr; 40(15):4714-21. PubMed ID: 11294639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of flavin dehydrogenase compartmentalization: requirements for PutA-membrane association in Salmonella typhimurium.
    Surber MW; Maloy S
    Biochim Biophys Acta; 1999 Sep; 1421(1):5-18. PubMed ID: 10561467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of proline utilization in Salmonella typhimurium: characterization of put::Mu d(Ap, lac) operon fusions.
    Maloy SR; Roth JR
    J Bacteriol; 1983 May; 154(2):561-8. PubMed ID: 6302076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA.
    Baban BA; Vinod MP; Tanner JJ; Becker DF
    Biochim Biophys Acta; 2004 Sep; 1701(1-2):49-59. PubMed ID: 15450175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction.
    Zhang W; Zhou Y; Becker DF
    Biochemistry; 2004 Oct; 43(41):13165-74. PubMed ID: 15476410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of L-thiazolidine-4-carboxylate by L-proline dehydrogenase in Escherichia coli.
    Deutch CE
    J Gen Microbiol; 1992 Aug; 138 Pt 8():1593-8. PubMed ID: 1527501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical and functional characterization of the proline dehydrogenase domain of the PutA flavoprotein from Escherichia coli.
    Vinod MP; Bellur P; Becker DF
    Biochemistry; 2002 May; 41(20):6525-32. PubMed ID: 12009917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.