These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35410019)

  • 1. Multi-Strategy Assessment of Different Uses of QSAR under REACH Analysis of Alternatives to Advance Information Transparency.
    Chinen K; Malloy T
    Int J Environ Res Public Health; 2022 Apr; 19(7):. PubMed ID: 35410019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSAR Use in REACH Analyses of Alternatives to Predict Human Health and Environmental Toxicity of Alternative Chemical Substances.
    Chinen K; Malloy T
    Integr Environ Assess Manag; 2020 Sep; 16(5):745-760. PubMed ID: 32162772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty in QSAR predictions.
    Sahlin U
    Altern Lab Anim; 2013 Mar; 41(1):111-25. PubMed ID: 23614548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arguments for considering uncertainty in QSAR predictions in hazard and risk assessments.
    Sahlin U; Golsteijn L; Iqbal MS; Peijnenburg W
    Altern Lab Anim; 2013 Mar; 41(1):91-110. PubMed ID: 23614547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting PBT and CMR properties of substances of very high concern (SVHCs) using QSAR models, and application for K-REACH.
    Moon J; Lee B; Ra JS; Kim KT
    Toxicol Rep; 2020; 7():995-1000. PubMed ID: 32874922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated testing and intelligent assessment-new challenges under REACH.
    Ahlers J; Stock F; Werschkun B
    Environ Sci Pollut Res Int; 2008 Oct; 15(7):565-72. PubMed ID: 18818964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The OSIRIS Weight of Evidence approach: ITS for skin sensitisation.
    Rorije E; Aldenberg T; Buist H; Kroese D; Schüürmann G
    Regul Toxicol Pharmacol; 2013 Nov; 67(2):146-56. PubMed ID: 23792263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the chemical-induced eye injury using a Weight-of-Evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): part II: corrosion potential.
    Verma RP; Matthews EJ
    Regul Toxicol Pharmacol; 2015 Mar; 71(2):331-6. PubMed ID: 25510831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural alerts for the identification of bioaccumulative compounds.
    Valsecchi C; Grisoni F; Consonni V; Ballabio D
    Integr Environ Assess Manag; 2019 Jan; 15(1):19-28. PubMed ID: 30024088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish.
    Claeys L; Iaccino F; Janssen CR; Van Sprang P; Verdonck F
    Environ Toxicol Chem; 2013 Oct; 32(10):2217-25. PubMed ID: 23775559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR screening of 70,983 REACH substances for genotoxic carcinogenicity, mutagenicity and developmental toxicity in the ChemScreen project.
    Wedebye EB; Dybdahl M; Nikolov NG; Jónsdóttir SÓ; Niemelä JR
    Reprod Toxicol; 2015 Aug; 55():64-72. PubMed ID: 25797653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the chemical-induced eye injury using a weight-of-evidence (WoE) battery of 21 artificial neural network (ANN) c-QSAR models (QSAR-21): part I: irritation potential.
    Verma RP; Matthews EJ
    Regul Toxicol Pharmacol; 2015 Mar; 71(2):318-30. PubMed ID: 25497990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSARs in ecotoxicological risk assessment.
    de Roode D; Hoekzema C; de Vries-Buitenweg S; van de Waart B; van der Hoeven J
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):24-35. PubMed ID: 16529851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and description of the uncertainty, variability, bias and influence in quantitative structure-activity relationships (QSARs) for toxicity prediction.
    Cronin MTD; Richarz AN; Schultz TW
    Regul Toxicol Pharmacol; 2019 Aug; 106():90-104. PubMed ID: 31026540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes.
    Gissi A; Gadaleta D; Floris M; Olla S; Carotti A; Novellino E; Benfenati E; Nicolotti O
    ALTEX; 2014; 31(1):23-36. PubMed ID: 24247988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal and external validation of the long-term QSARs for neutral organics to fish from ECOSAR™.
    de Haas EM; Eikelboom T; Bouwman T
    SAR QSAR Environ Res; 2011; 22(5-6):545-59. PubMed ID: 21732893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Best Practices for QSAR Model Reporting: Physical and Chemical Properties, Ecotoxicity, Environmental Fate, Human Health, and Toxicokinetics Endpoints.
    Piir G; Kahn I; García-Sosa AT; Sild S; Ahte P; Maran U
    Environ Health Perspect; 2018 Dec; 126(12):126001. PubMed ID: 30561225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of "fitness-for-purpose" of quantitative structure-activity relationship (QSAR) models to predict (eco-)toxicological endpoints for regulatory use.
    Belfield SJ; Enoch SJ; Firman JW; Madden JC; Schultz TW; Cronin MTD
    Regul Toxicol Pharmacol; 2021 Jul; 123():104956. PubMed ID: 33979632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology.
    Perkins R; Fang H; Tong W; Welsh WJ
    Environ Toxicol Chem; 2003 Aug; 22(8):1666-79. PubMed ID: 12924569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between bioconcentration factor (BCF) data provided by industry to the European Chemicals Agency (ECHA) and data derived from QSAR models.
    Petoumenou MI; Pizzo F; Cester J; Fernández A; Benfenati E
    Environ Res; 2015 Oct; 142():529-34. PubMed ID: 26282223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.