BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35410288)

  • 1. Expansion of the prime editing modality with Cas9 from Francisella novicida.
    Oh Y; Lee WJ; Hur JK; Song WJ; Lee Y; Kim H; Gwon LW; Kim YH; Park YH; Kim CH; Lim KS; Song BS; Huh JW; Kim SU; Jun BH; Jung C; Lee SH
    Genome Biol; 2022 Apr; 23(1):92. PubMed ID: 35410288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise genome-wide base editing by the CRISPR Nickase system in yeast.
    Satomura A; Nishioka R; Mori H; Sato K; Kuroda K; Ueda M
    Sci Rep; 2017 May; 7(1):2095. PubMed ID: 28522803
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Acharya S; Mishra A; Paul D; Ansari AH; Azhar M; Kumar M; Rauthan R; Sharma N; Aich M; Sinha D; Sharma S; Jain S; Ray A; Jain S; Ramalingam S; Maiti S; Chakraborty D
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20959-20968. PubMed ID: 31570623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prime genome editing in rice and wheat.
    Lin Q; Zong Y; Xue C; Wang S; Jin S; Zhu Z; Wang Y; Anzalone AV; Raguram A; Doman JL; Liu DR; Gao C
    Nat Biotechnol; 2020 May; 38(5):582-585. PubMed ID: 32393904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prime editing with genuine Cas9 nickases minimizes unwanted indels.
    Lee J; Lim K; Kim A; Mok YG; Chung E; Cho SI; Lee JM; Kim JS
    Nat Commun; 2023 Mar; 14(1):1786. PubMed ID: 36997524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes.
    Yeo WL; Heng E; Tan LL; Lim YW; Lim YH; Hoon S; Zhao H; Zhang MM; Wong FT
    Biotechnol Bioeng; 2019 Sep; 116(9):2330-2338. PubMed ID: 31090220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells.
    Tao R; Wang Y; Jiao Y; Hu Y; Li L; Jiang L; Zhou L; Qu J; Chen Q; Yao S
    Nucleic Acids Res; 2022 Jun; 50(11):6423-6434. PubMed ID: 35687127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered CRISPR prime editors with compact, untethered reverse transcriptases.
    Grünewald J; Miller BR; Szalay RN; Cabeceiras PK; Woodilla CJ; Holtz EJB; Petri K; Joung JK
    Nat Biotechnol; 2023 Mar; 41(3):337-343. PubMed ID: 36163548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient generation of isogenic pluripotent stem cell models using prime editing.
    Li H; Busquets O; Verma Y; Syed KM; Kutnowski N; Pangilinan GR; Gilbert LA; Bateup HS; Rio DC; Hockemeyer D; Soldner F
    Elife; 2022 Sep; 11():. PubMed ID: 36069759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shortening the sgRNA-DNA interface enables SpCas9 and eSpCas9(1.1) to nick the target DNA strand.
    Fan R; Chai Z; Xing S; Chen K; Qiu F; Chai T; Qiu JL; Zhang Z; Zhang H; Gao C
    Sci China Life Sci; 2020 Nov; 63(11):1619-1630. PubMed ID: 32592086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of an Avian Myeloblastosis Virus (AMV) Reverse Transcriptase Prime Editor.
    Tsai YT; da Costa BL; Caruso SM; Nolan ND; Levi SR; Tsang SH; Quinn PMJ
    Adv Exp Med Biol; 2023; 1415():109-114. PubMed ID: 37440022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Optimization of CRISPR Prime Editing System in Photoautotrophic Cells.
    Jiang Z; Abdullah ; Zhang S; Jiang Y; Liu R; Xiao Y
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of nicking properties of CRISPR-Cas12a effector for genome editing.
    Kim CH; Lee WJ; Oh Y; Lee Y; Lee HK; Seong JB; Lim KS; Park SJ; Huh JW; Kim YH; Kim KM; Hur JK; Lee SH
    Sci Rep; 2024 Feb; 14(1):3352. PubMed ID: 38336977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing.
    Tao R; Wang Y; Hu Y; Jiao Y; Zhou L; Jiang L; Li L; He X; Li M; Yu Y; Chen Q; Yao S
    Signal Transduct Target Ther; 2022 Apr; 7(1):108. PubMed ID: 35440051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase.
    Xu T; Li Y; Shi Z; Hemme CL; Li Y; Zhu Y; Van Nostrand JD; He Z; Zhou J
    Appl Environ Microbiol; 2015 Jul; 81(13):4423-31. PubMed ID: 25911483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Development, Optimization and Future of Prime Editing.
    Petrova IO; Smirnikhina SA
    Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the Targeting Scope of CRISPR Base Editing System Beyond NGG.
    Yu SY; Birkenshaw A; Thomson T; Carlaw T; Zhang LH; Ross CJD
    CRISPR J; 2022 Apr; 5(2):187-202. PubMed ID: 35238621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a CRISPR/Cas9
    Ma JX; He WY; Hua HM; Zhu Q; Zheng GS; Zimin AA; Wang WF; Lu YH
    ACS Synth Biol; 2023 Oct; 12(10):3114-3123. PubMed ID: 37722085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A truncated reverse transcriptase enhances prime editing by split AAV vectors.
    Gao Z; Ravendran S; Mikkelsen NS; Haldrup J; Cai H; Ding X; Paludan SR; Thomsen MK; Mikkelsen JG; Bak RO
    Mol Ther; 2022 Sep; 30(9):2942-2951. PubMed ID: 35808824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.