BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35410430)

  • 21. CRISPR/Cas9-mediated tetra-allelic mutation of the 'Green Revolution' SEMIDWARF-1 (SD-1) gene confers lodging resistance in tef (Eragrostis tef).
    Beyene G; Chauhan RD; Villmer J; Husic N; Wang N; Gebre E; Girma D; Chanyalew S; Assefa K; Tabor G; Gehan M; McGrone M; Yang M; Lenderts B; Schwartz C; Gao H; Gordon-Kamm W; Taylor NJ; MacKenzie DJ
    Plant Biotechnol J; 2022 Sep; 20(9):1716-1729. PubMed ID: 35560779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants.
    Che P; Chang S; Simon MK; Zhang Z; Shaharyar A; Ourada J; O'Neill D; Torres-Mendoza M; Guo Y; Marasigan KM; Vielle-Calzada JP; Ozias-Akins P; Albertsen MC; Jones TJ
    Plant J; 2021 May; 106(3):817-830. PubMed ID: 33595147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing
    Molina-Risco M; Ibarra O; Faion-Molina M; Kim B; Septiningsih EM; Thomson MJ
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved Transformation and Regeneration of
    Liang Y; Biswas S; Kim B; Bailey-Serres J; Septiningsih EM
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in Agrobacterium transformation and vector design result in high-frequency targeted gene insertion in maize.
    Peterson D; Barone P; Lenderts B; Schwartz C; Feigenbutz L; St Clair G; Jones S; Svitashev S
    Plant Biotechnol J; 2021 Oct; 19(10):2000-2010. PubMed ID: 33934470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-Cas9-mediated genome editing in apple and grapevine.
    Osakabe Y; Liang Z; Ren C; Nishitani C; Osakabe K; Wada M; Komori S; Malnoy M; Velasco R; Poli M; Jung MH; Koo OJ; Viola R; Nagamangala Kanchiswamy C
    Nat Protoc; 2018 Dec; 13(12):2844-2863. PubMed ID: 30390050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing Maize Transformation and Targeted Mutagenesis through the Assistance of Non-Integrating
    Kang M; Lee K; Ji Q; Grosic S; Wang K
    Plants (Basel); 2023 Jul; 12(15):. PubMed ID: 37570953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems.
    Zhang Y; Zhang Q; Chen QJ
    Sci China Life Sci; 2020 Oct; 63(10):1491-1498. PubMed ID: 32279281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in Hemp (Cannabis Sativa L.).
    Zhang X; Xu G; Cheng C; Lei L; Sun J; Xu Y; Deng C; Dai Z; Yang Z; Chen X; Liu C; Tang Q; Su J
    Plant Biotechnol J; 2021 Oct; 19(10):1979-1987. PubMed ID: 33960612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maize Transformation Using the Morphogenic Genes Baby Boom and Wuschel2.
    Jones T; Lowe K; Hoerster G; Anand A; Wu E; Wang N; Arling M; Lenderts B; Gordon-Kamm W
    Methods Mol Biol; 2019; 1864():81-93. PubMed ID: 30415330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Editing of an Alpha-Kafirin Gene Family Increases, Digestibility and Protein Quality in Sorghum.
    Li A; Jia S; Yobi A; Ge Z; Sato SJ; Zhang C; Angelovici R; Clemente TE; Holding DR
    Plant Physiol; 2018 Aug; 177(4):1425-1438. PubMed ID: 29925584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis.
    Weiss T; Wang C; Kang X; Zhao H; Elena Gamo M; Starker CG; Crisp PA; Zhou P; Springer NM; Voytas DF; Zhang F
    Plant J; 2020 Nov; 104(3):828-838. PubMed ID: 32786122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid and Efficient Genetic Transformation of Sorghum via Agrobacterium-Mediated Method.
    Do PT; Lee H; Nelson-Vasilchik K; Kausch A; Zhang ZJ
    Curr Protoc Plant Biol; 2018 Dec; 3(4):e20077. PubMed ID: 30312019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction.
    Peng C; Wang H; Xu X; Wang X; Chen X; Wei W; Lai Y; Liu G; Godwin ID; Li J; Zhang L; Xu J
    Plant J; 2018 Aug; 95(3):557-567. PubMed ID: 29761864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Efficient Gene Excision System in Maize.
    Wang N; Arling M; Hoerster G; Ryan L; Wu E; Lowe K; Gordon-Kamm W; Jones TJ; Chilcoat ND; Anand A
    Front Plant Sci; 2020; 11():1298. PubMed ID: 32983193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.
    Bánfalvi Z; Csákvári E; Villányi V; Kondrák M
    BMC Biotechnol; 2020 May; 20(1):25. PubMed ID: 32398038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advancing Agrobacterium-Based Crop Transformation and Genome Modification Technology for Agricultural Biotechnology.
    Anand A; Jones TJ
    Curr Top Microbiol Immunol; 2018; 418():489-507. PubMed ID: 29959543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas9 genome editing through
    Zlobin NE; Lebedeva MV; Taranov VV
    Crit Rev Biotechnol; 2020 Mar; 40(2):153-168. PubMed ID: 31903793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-Based Gene Editing in Soybean.
    Bao A; Tran LP; Cao D
    Methods Mol Biol; 2020; 2107():349-364. PubMed ID: 31893458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.