These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35410470)

  • 21. Practical Prelithiation of 4.5 V LiCoO
    Zhao X; Yi R; Zheng L; Liu Y; Li Z; Zeng L; Shen Y; Lu W; Chen L
    Small; 2022 Mar; 18(9):e2106394. PubMed ID: 34908238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Weakly Solvating Solution Enables Chemical Prelithiation of Graphite-SiO
    Choi J; Jeong H; Jang J; Jeon AR; Kang I; Kwon M; Hong J; Lee M
    J Am Chem Soc; 2021 Jun; 143(24):9169-9176. PubMed ID: 34111352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Encasing Prelithiated Silicon Species in the Graphite Scaffold: An Enabling Anode Design for the Highly Reversible, Energy-Dense Cell Model.
    Bai M; Yang L; Jia Q; Tang X; Liu Y; Wang H; Zhang M; Guo R; Ma Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47490-47502. PubMed ID: 32960034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unblocked Electron Channels Enable Efficient Contact Prelithiation for Lithium-Ion Batteries.
    Yue XY; Yao YX; Zhang J; Yang SY; Li Z; Yan C; Zhang Q
    Adv Mater; 2022 Apr; 34(15):e2110337. PubMed ID: 35141957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of the Crystalline Li
    Bärmann P; Krueger B; Casino S; Winter M; Placke T; Wittstock G
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55903-55912. PubMed ID: 33259711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrolyte Design Enabling a High-Safety and High-Performance Si Anode with a Tailored Electrode-Electrolyte Interphase.
    Cao Z; Zheng X; Qu Q; Huang Y; Zheng H
    Adv Mater; 2021 Sep; 33(38):e2103178. PubMed ID: 34342925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Industrial Silicon-Wafer-Wastage-Derived Carbon-Enfolded Si/Si-C/C Nanocomposite Anode Material through Plasma-Assisted Discharge Process for Rechargeable Li-Ion Storage.
    Muruganantham R; Yang CW; Wang HJ; Huang CH; Liu WR
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silicon/Mesoporous Carbon/Crystalline TiO
    Luo W; Wang Y; Wang L; Jiang W; Chou SL; Dou SX; Liu HK; Yang J
    ACS Nano; 2016 Nov; 10(11):10524-10532. PubMed ID: 27786460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells.
    Kim HJ; Choi S; Lee SJ; Seo MW; Lee JG; Deniz E; Lee YJ; Kim EK; Choi JW
    Nano Lett; 2016 Jan; 16(1):282-8. PubMed ID: 26694703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topology Optimized Prelithiated SiO Anode Materials for Lithium-Ion Batteries.
    Chung DJ; Youn D; Kim JY; Jeong WJ; Kim S; Ma D; Lee TR; Kim ST; Kim H
    Small; 2022 Jul; 18(27):e2202209. PubMed ID: 35686333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries.
    Ezzedine M; Zamfir MR; Jardali F; Leveau L; Caristan E; Ersen O; Cojocaru CS; Florea I
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24734-24746. PubMed ID: 34019366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface-Bound Silicon Nanoparticles with a Planar-Oriented N-Type Polymer for Cycle-Stable Li-Ion Battery Anode.
    Zhang J; Fan S; Wang H; Qian J; Yang H; Ai X; Liu J
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13251-13256. PubMed ID: 30874420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multilayered sturdy shell protects silicon nanoparticle Si@void C@TiO
    Hou L; Cui R; Xiong S; Jiang X; Wang D; Jiang Y; Deng S; Guo Y; Gao F
    Phys Chem Chem Phys; 2021 Feb; 23(6):3934-3941. PubMed ID: 33543199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Swelling-Controlled Double-Layered SiO
    Raza A; Jung JY; Lee CH; Kim BG; Choi JH; Park MS; Lee SM
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7161-7170. PubMed ID: 33539708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells.
    Ruttert M; Holtstiege F; Hüsker J; Börner M; Winter M; Placke T
    Beilstein J Nanotechnol; 2018; 9():2381-2395. PubMed ID: 30254833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cu2+1O coated polycrystalline Si nanoparticles as anode for lithium-ion battery.
    Zhang J; Zhang C; Wu S; Liu Z; Zheng J; Zuo Y; Xue C; Li C; Cheng B
    Nanoscale Res Lett; 2016 Dec; 11(1):214. PubMed ID: 27102903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Coulombic-Efficiency Carbon/Li Clusters Composite Anode without Precycling or Prelithiation.
    Tian R; Duan H; Guo Y; Li H; Liu H
    Small; 2018 Jul; ():e1802226. PubMed ID: 30028578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of the Silicon-Carbon Interface on the Structure and Electrochemical Performance of a Phenolic Resin-Derived Si@C Core-Shell Nanocomposite-Based Anode.
    Fox AM; Vrankovic D; Buchmeiser MR
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):761-770. PubMed ID: 34971306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.