These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35410545)

  • 1. Sensitivity analysis for calibrated inverse probability-of-censoring weighted estimators under non-ignorable dropout.
    Su L; Seaman SR; Yiu S
    Stat Methods Med Res; 2022 Jul; 31(7):1374-1391. PubMed ID: 35410545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models.
    Yiu S; Su L
    Biometrics; 2022 Mar; 78(1):115-127. PubMed ID: 33247594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A local sensitivity analysis approach to longitudinal non-Gaussian data with non-ignorable dropout.
    Xie H
    Stat Med; 2008 Jul; 27(16):3155-77. PubMed ID: 17948917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model.
    Sattar A; Weissfeld LA; Molenberghs G
    Stat Med; 2011 Nov; 30(27):3167-80. PubMed ID: 21898524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnosing Covariate Balance Across Levels of Right-Censoring Before and After Application of Inverse-Probability-of-Censoring Weights.
    Jackson JW
    Am J Epidemiol; 2019 Dec; 188(12):2213-2221. PubMed ID: 31145432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-parametric methods of handling missing data in mortal cohorts under non-ignorable missingness.
    Wen L; Seaman SR
    Biometrics; 2018 Dec; 74(4):1427-1437. PubMed ID: 29772074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model selection for survival individualized treatment rules using the jackknife estimator.
    Honvoh GD; Cho H; Kosorok MR
    BMC Med Res Methodol; 2022 Dec; 22(1):328. PubMed ID: 36550398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring.
    Chakladar S; Rosin S; Hudgens MG; Halloran ME; Clemens JD; Ali M; Emch ME
    Biometrics; 2022 Jun; 78(2):777-788. PubMed ID: 33768557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addressing Extreme Propensity Scores in Estimating Counterfactual Survival Functions via the Overlap Weights.
    Cheng C; Li F; Thomas LE; Li FF
    Am J Epidemiol; 2022 May; 191(6):1140-1151. PubMed ID: 35238335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responsiveness-informed multiple imputation and inverse probability-weighting in cohort studies with missing data that are non-monotone or not missing at random.
    Doidge JC
    Stat Methods Med Res; 2018 Feb; 27(2):352-363. PubMed ID: 26984909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Best linear inverse probability weighted estimation for two-phase designs and missing covariate regression.
    Wang CY; Dai J
    Stat Med; 2019 Jul; 38(15):2783-2796. PubMed ID: 30908669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An index of local sensitivity to non-ignorability for multivariate longitudinal mixed data with potential non-random dropout.
    Mahabadi SE; Ganjali M
    Stat Med; 2010 Jul; 29(17):1779-92. PubMed ID: 20658547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correcting for dependent censoring in routine outcome monitoring data by applying the inverse probability censoring weighted estimator.
    Willems S; Schat A; van Noorden MS; Fiocco M
    Stat Methods Med Res; 2018 Feb; 27(2):323-335. PubMed ID: 26988930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-ignorable loss to follow-up: correcting mortality estimates based on additional outcome ascertainment.
    Schomaker M; Gsponer T; Estill J; Fox M; Boulle A
    Stat Med; 2014 Jan; 33(1):129-42. PubMed ID: 23873614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covariate association eliminating weights: a unified weighting framework for causal effect estimation.
    Yiu S; Su L
    Biometrika; 2018 Sep; 105(3):709-722. PubMed ID: 31031408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging auxiliary data to improve precision in inverse probability-weighted analyses.
    Zalla LC; Yang JY; Edwards JK; Cole SR
    Ann Epidemiol; 2022 Oct; 74():75-83. PubMed ID: 35940394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian inference from incomplete longitudinal data: a simple method to quantify sensitivity to nonignorable dropout.
    Xie H
    Stat Med; 2009 Sep; 28(22):2725-47. PubMed ID: 19572257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shared parameter and copula models for analysis of semicontinuous longitudinal data with nonrandom dropout and informative censoring.
    Jaffa MA; Gebregziabher M; Jaffa AA
    Stat Methods Med Res; 2022 Mar; 31(3):451-474. PubMed ID: 34806502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-Adaptive Selection of the Propensity Score Truncation Level for Inverse-Probability-Weighted and Targeted Maximum Likelihood Estimators of Marginal Point Treatment Effects.
    Gruber S; Phillips RV; Lee H; van der Laan MJ
    Am J Epidemiol; 2022 Aug; 191(9):1640-1651. PubMed ID: 35512316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regression modeling of restricted mean survival time for left-truncated right-censored data.
    Rong R; Ning J; Zhu H
    Stat Med; 2022 Jul; 41(16):3003-3021. PubMed ID: 35708238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.