These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35411404)

  • 1. Atmospheric dispersion modeling for an accidental release from a SLOWPOKE-2 research reactor: a case study.
    Dennis HT; Grant CN; Preston JA
    Radiat Environ Biophys; 2022 May; 61(2):325-334. PubMed ID: 35411404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of radiological consequence of a hypothetical accident at the Ghana Research Reactor-1 facility based on terrorist attack.
    Obeng HK; Birikorang SA; Gyamfi K; Adu S; Nyamful A
    Sci Prog; 2021 Oct; 104(4):368504211054986. PubMed ID: 34821181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric transport of radioactive debris to Norway in case of a hypothetical accident related to the recovery of the Russian submarine K-27.
    Bartnicki J; Amundsen I; Brown J; Hosseini A; Hov Ø; Haakenstad H; Klein H; Lind OC; Salbu B; Szacinski Wendel CC; Ytre-Eide MA
    J Environ Radioact; 2016 Jan; 151 Pt 2():404-16. PubMed ID: 25804322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiological consequence analysis for hypothetical accidental release from Nigerian Research Reactor-1.
    Simon J; Ibrahim YV; Adeyemo DJ; Garba NN; Asuku A; Bello S; Ibikunle IK
    Appl Radiat Isot; 2022 Aug; 186():110308. PubMed ID: 35675740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RADIATION HAZARDS FROM CRITICALITY ACCIDENT IN OPEN POOL TYPE REACTOR.
    Abdelhady A
    Radiat Prot Dosimetry; 2019 May; 183(3):336-341. PubMed ID: 30099561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment.
    Rishel JP; Keillor ME; Arrigo LM; Baciak JE; Detwiler RS; Kernan WJ; Kirkham RR; Milbrath BD; Seifert A; Seifert CE; Smart JE
    Health Phys; 2016 May; 110(5):526-32. PubMed ID: 27023039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of radionuclide atmospheric dispersion and dose assessment for inhabitants of Tehran province after a hypothetical accident of the Tehran Research Reactor.
    Vali R; Adelikhah ME; Feghhi SAH; Noorikalkhoran O; Ahangari R
    Radiat Environ Biophys; 2019 Mar; 58(1):119-128. PubMed ID: 30421068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refinement of source term and atmospheric dispersion simulations of radionuclides during the Fukushima Daiichi Nuclear Power Station accident.
    Terada H; Nagai H; Tsuduki K; Furuno A; Kadowaki M; Kakefuda T
    J Environ Radioact; 2020 Mar; 213():106104. PubMed ID: 31983441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consequences for Norway from a hypothetical accident at the Sellafield reprocessing plant: Atmospheric transport of radionuclides.
    Klein H; Bartnicki J; Brown JE; Hosseini A; Lind OC; Ytre-Eide MA; Salbu B
    J Environ Radioact; 2021 Oct; 237():106703. PubMed ID: 34274887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion and ground deposition of radioactive material according to airflow patterns for enhancing the preparedness to N/R emergencies.
    Hernández-Ceballos MA; Sangiorgi M; García-Puerta B; Montero M; Trueba C
    J Environ Radioact; 2020 May; 216():106178. PubMed ID: 32056787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainties in atmospheric dispersion modelling during nuclear accidents.
    Sørensen JH; Bartnicki J; Blixt Buhr AM; Feddersen H; Hoe SC; Israelson C; Klein H; Lauritzen B; Lindgren J; Schönfeldt F; Sigg R
    J Environ Radioact; 2020 Oct; 222():106356. PubMed ID: 32892908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-integrated thyroid dose for accidental releases from Pakistan Research Reactor-1.
    Raza SS; Iqbal M; Salahuddin A; Avila R; Pervez S
    J Radiol Prot; 2004 Sep; 24(3):307-14. PubMed ID: 15511022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the protective actions for a hypothetical accident of the Bushehr nuclear power plant at different meteorological conditions.
    Ahangari R; Noori-Kalkhoran O
    Radiat Environ Biophys; 2019 May; 58(2):277-285. PubMed ID: 30617522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the Duration of Meteorological Data Collection on the Prospective Assessment of Long-Term Atmospheric Dispersion Factors.
    Choi Y; Kim EH
    Radiat Prot Dosimetry; 2018 Apr; 179(1):69-79. PubMed ID: 29040769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of (134)Cs/(137)Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident.
    Chino M; Terada H; Nagai H; Katata G; Mikami S; Torii T; Saito K; Nishizawa Y
    Sci Rep; 2016 Aug; 6():31376. PubMed ID: 27546490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation Modeling and Finite Cloud Effects for Atmospheric Dispersion Calculations in Near-field Applications: Modeling of the Full Scale RDD Experiments with Operational Models in Canada, Part II.
    Lebel L; Bourgouin P; Chouhan S; Ek N; Korolevych V; Malo A; Bensimon D; Erhardt L
    Health Phys; 2016 May; 110(5):518-25. PubMed ID: 27023038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident.
    Katata G; Ota M; Terada H; Chino M; Nagai H
    J Environ Radioact; 2012 Jul; 109():103-13. PubMed ID: 22406754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Sensitivity of Atmospheric Dispersion Calculations in Near-field Applications: Modeling of the Full Scale RDD Experiments with Operational Models in Canada, Part I.
    Lebel L; Bourgouin P; Chouhan S; Ek N; Korolevych V; Malo A; Bensimon D; Erhardt L
    Health Phys; 2016 May; 110(5):499-517. PubMed ID: 27023037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-range atmospheric dispersion modelling. Intercomparison of simple models in EMRAS-2 project.
    Periáñez R; Thiessen KM; Chouhan SL; Mancini F; Navarro E; Sdouz G; Trifunović D
    J Environ Radioact; 2016 Oct; 162-163():225-234. PubMed ID: 27267160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of Cloudshine Gamma Dose Calculations in the CAP-88 Dispersion Model.
    McNaughton MW; Gillis JM; Ruedig E; Whicker JJ; Fuehne DP
    Health Phys; 2017 Apr; 112(4):414-419. PubMed ID: 28234703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.