These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35411520)
41. Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: Field evaluation of a pilot intervention program in rural China. Liu Y; Zhang Y; Li C; Bai Y; Zhang D; Xue C; Liu G Environ Pollut; 2018 Sep; 240():661-669. PubMed ID: 29775943 [TBL] [Abstract][Full Text] [Related]
42. Mercury mass flow in iron and steel production process and its implications for mercury emission control. Wang F; Wang S; Zhang L; Yang H; Gao W; Wu Q; Hao J J Environ Sci (China); 2016 May; 43():293-301. PubMed ID: 27155436 [TBL] [Abstract][Full Text] [Related]
43. Integration of steam gasification and catalytic reforming of lignocellulosic biomass as a strategy to improve syngas quality and pollutants removal. Quiroga E; Cifuentes B; Moltó J; Ortuño N; Conesa J; Davó-Quiñonero A; Cobo M Waste Manag; 2022 Jun; 147():48-59. PubMed ID: 35623261 [TBL] [Abstract][Full Text] [Related]
44. Trends in air pollutant emissions from the sintering process of the iron and steel industry in the Fenwei Plain and surrounding regions in China, 2014-2017. Wang S; Liu J; Yi H; Tang X; Yu Q; Zhao S; Gao F; Zhou Y; Zhong T; Wang Y Chemosphere; 2022 Mar; 291(Pt 2):132917. PubMed ID: 34793850 [TBL] [Abstract][Full Text] [Related]
45. Carbon consumption mechanism of activated coke in the presence of water vapor. Guo J; Li Y; Wang B; Zhu T Environ Sci Pollut Res Int; 2020 Jan; 27(2):1558-1568. PubMed ID: 31749012 [TBL] [Abstract][Full Text] [Related]
46. Valorization of fluid petroleum coke for efficient catalytic destruction of biomass gasification tar. Zhang X; Chen Z; Cheng L; Xu L; Bi X; Liu Q J Hazard Mater; 2022 Feb; 424(Pt A):127297. PubMed ID: 34601413 [TBL] [Abstract][Full Text] [Related]
47. [Study on inhibition of NO(x) and dioxin emissions by carbohydrazide under moderate to high temperatures]. Guan ZZ; Chen DZ; Hong X; Li XW; Yu YM; Wang YJ Huan Jing Ke Xue; 2011 Sep; 32(9):2810-6. PubMed ID: 22165256 [TBL] [Abstract][Full Text] [Related]
48. Life cycle assessment of ultra-low treatment for steel industry sintering flue gas emissions. Cui L; Ba K; Li F; Wang Q; Ma Q; Yuan X; Mu R; Hong J; Zuo J Sci Total Environ; 2020 Jul; 725():138292. PubMed ID: 32298887 [TBL] [Abstract][Full Text] [Related]
49. A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles. Koike M; Li D; Nakagawa Y; Tomishige K ChemSusChem; 2012 Dec; 5(12):2312-4. PubMed ID: 23135797 [TBL] [Abstract][Full Text] [Related]
50. Concept design, technical performance, and GHG emissions analysis of petroleum coke direct chemical looping hydrogen highly integrated with gasification for methanol production process. Xiang D; Li P; Liu L Sci Total Environ; 2022 Sep; 838(Pt 4):156652. PubMed ID: 35697223 [TBL] [Abstract][Full Text] [Related]
51. [Health risk assessment of coke oven PAHs emissions]. Bo X; Wang G; Wen R; Zhao CL; Wu T; Li SB Huan Jing Ke Xue; 2014 Jul; 35(7):2742-7. PubMed ID: 25244863 [TBL] [Abstract][Full Text] [Related]
52. Potential of Pinewood Biochar as an Eco-Friendly Reducing Agent in Iron Ore Reduction. Chuanchai A; Wu KT ACS Omega; 2024 Mar; 9(12):14279-14286. PubMed ID: 38559913 [TBL] [Abstract][Full Text] [Related]
53. Chemical looping hydrogen production with modified iron ore as oxygen carriers using biomass pyrolysis gas as fuel. Xu T; Xiao B; Fu G; Yang S; Wang X RSC Adv; 2019 Nov; 9(67):39064-39075. PubMed ID: 35540691 [TBL] [Abstract][Full Text] [Related]
54. Experimental Study of NO Zan H; Chen X; Ma J; Liu D; Wu Y ACS Omega; 2020 Jul; 5(26):16037-16044. PubMed ID: 32656425 [TBL] [Abstract][Full Text] [Related]
55. Investigation of the Contents of the Stack Emissions of Iron Ore Sinter Plants With and Without Bag Filter. Angalakuditi VB; Bappakan K; Karre S; Muppuri KR; Singh LR J Sustain Metall; 2023; 9(1):52-65. PubMed ID: 37519416 [TBL] [Abstract][Full Text] [Related]
56. Numerical study and orthogonal analysis of optimal performance parameters for vertical cooling of sintered ore. Wang W; Li S; Zhen J; Guo J; Xu W Sci Rep; 2024 Feb; 14(1):4904. PubMed ID: 38418572 [TBL] [Abstract][Full Text] [Related]
57. Study on the High-Temperature Interaction between Coke and Iron Ores with Different Layer Thicknesses. Wang YH; Du P; Diao J; Xie B; Zhu MH Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541512 [TBL] [Abstract][Full Text] [Related]
58. Experimental comparison between steam and water tilt-angle injection effects on NOx reduction from the gaseous flame. Kotob MR; Lu T; Wahid SS RSC Adv; 2021 Jul; 11(41):25575-25585. PubMed ID: 35478919 [TBL] [Abstract][Full Text] [Related]
59. Steam Reforming of Model Bio-Oil Aqueous Fraction Using Ni-(Cu, Co, Cr)/SBA-15 Catalysts. Calles JA; Carrero A; Vizcaíno AJ; García-Moreno L; Megía PJ Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30691053 [TBL] [Abstract][Full Text] [Related]
60. Study of Catalytic Combustion of Dioxins on Ce-V-Ti Catalysts Modified by Graphene Oxide in Simulating Iron Ore Sintering Flue Gas. Shi Q; Long D; Long HM; Chun TJ Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31888069 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]