BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 35411573)

  • 41. A comparison of methods for measurement of spatial resolution in two-dimensional circular EIT images.
    Wheeler JL; Wang W; Tang M
    Physiol Meas; 2002 Feb; 23(1):169-76. PubMed ID: 11876230
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional validation and comparison framework for EIT lung imaging.
    Grychtol B; Elke G; Meybohm P; Weiler N; Frerichs I; Adler A
    PLoS One; 2014; 9(8):e103045. PubMed ID: 25110887
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The boundary element method in the forward and inverse problem of electrical impedance tomography.
    de Munck JC; Faes TJ; Heethaar RM
    IEEE Trans Biomed Eng; 2000 Jun; 47(6):792-800. PubMed ID: 10833854
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Supervised Descent Learning for Thoracic Electrical Impedance Tomography.
    Zhang K; Guo R; Li M; Yang F; Xu S; Abubakar A
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1360-1369. PubMed ID: 32997620
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robust computation in 2D absolute EIT (a-EIT) using D-bar methods with the 'exp' approximation.
    Hamilton SJ; Mueller JL; Santos TR
    Physiol Meas; 2018 Jun; 39(6):064005. PubMed ID: 29846182
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Beltrami-net: domain-independent deep D-bar learning for absolute imaging with electrical impedance tomography (a-EIT).
    Hamilton SJ; Hänninen A; Hauptmann A; Kolehmainen V
    Physiol Meas; 2019 Jul; 40(7):074002. PubMed ID: 31091516
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of Pulmonary Structure and Function in Patients with Cystic Fibrosis from Electrical Impedance Tomography Data.
    Mueller JL
    Methods Mol Biol; 2022; 2393():733-750. PubMed ID: 34837209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Efficient Point-Matching Method-of-Moments for 2D and 3D Electrical Impedance Tomography Using Radial Basis Functions.
    Dimas C; Uzunoglu N; Sotiriadis PP
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):783-794. PubMed ID: 34398750
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Imaging of conductivity changes and electrode movement in EIT.
    Soleimani M; Gómez-Laberge C; Adler A
    Physiol Meas; 2006 May; 27(5):S103-13. PubMed ID: 16636402
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Level-set-based reconstruction algorithm for EIT lung images: first clinical results.
    Rahmati P; Soleimani M; Pulletz S; Frerichs I; Adler A
    Physiol Meas; 2012 May; 33(5):739-50. PubMed ID: 22532379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel time-difference electrical impedance tomography algorithm using multi-frequency information.
    Cao L; Li H; Xu C; Dai M; Ji Z; Shi X; Dong X; Fu F; Yang B
    Biomed Eng Online; 2019 Jul; 18(1):84. PubMed ID: 31358013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved Electrical Impedance Tomography Reconstruction via a Bayesian Approach With an Anatomical Statistical Shape Model.
    Page MI; Nicholson R; Tawhai MH; Clark AR; Kumar H
    IEEE Trans Biomed Eng; 2023 Aug; 70(8):2486-2495. PubMed ID: 37028024
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional image reconstruction for electrical impedance tomography.
    Kleinermann F; Avis NJ; Judah SK; Barber DC
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A77-83. PubMed ID: 9001605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved Imaging Resolution of Electrical Impedance Tomography Using Artificial Neural Networks for Image Reconstruction.
    Huang SW; Cheng HM; Lin SF
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1551-1554. PubMed ID: 31946190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reconstruction of conductivity changes due to ventilation and perfusion from EIT data collected on a rectangular electrode array.
    Mueller JL; Isaacson D; Newell JC
    Physiol Meas; 2001 Feb; 22(1):97-106. PubMed ID: 11236896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT.
    Crabb MG; Davidson JL; Little R; Wright P; Morgan AR; Miller CA; Naish JH; Parker GJ; Kikinis R; McCann H; Lionheart WR
    Physiol Meas; 2014 May; 35(5):863-79. PubMed ID: 24710978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Local mechanics of the lung tissue determined by functional EIT.
    Hahn G; Frerichs I; Kleyer M; Hellige G
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A159-66. PubMed ID: 9001614
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toward morphological thoracic EIT: major signal sources correspond to respective organ locations in CT.
    Ferrario D; Grychtol B; Adler A; Solà J; Böhm SH; Bodenstein M
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3000-8. PubMed ID: 22829362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An optimized strategy for real-time hemorrhage monitoring with electrical impedance tomography.
    Xu C; Dai M; You F; Shi X; Fu F; Liu R; Dong X
    Physiol Meas; 2011 May; 32(5):585-98. PubMed ID: 21478567
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks.
    Hamilton SJ; Hauptmann A
    IEEE Trans Med Imaging; 2018 Oct; 37(10):2367-2377. PubMed ID: 29994023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.