BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35411584)

  • 1. A Light-Activatable Photocaged Variant of the Ultra-High Affinity ALFA-Tag Nanobody.
    Jedlitzke B; Mootz HD
    Chembiochem; 2022 Jun; 23(12):e202200079. PubMed ID: 35411584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photobodies: Light-Activatable Single-Domain Antibody Fragments.
    Jedlitzke B; Yilmaz Z; Dörner W; Mootz HD
    Angew Chem Int Ed Engl; 2020 Jan; 59(4):1506-1510. PubMed ID: 31755215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Preparation of Photobodies: Light-Activated Single-Domain Antibody Fragments.
    Yilmaz Z; Jedlitzke B; Mootz HD
    Methods Mol Biol; 2022; 2446():409-424. PubMed ID: 35157286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications.
    Götzke H; Kilisch M; Martínez-Carranza M; Sograte-Idrissi S; Rajavel A; Schlichthaerle T; Engels N; Jungmann R; Stenmark P; Opazo F; Frey S
    Nat Commun; 2019 Sep; 10(1):4403. PubMed ID: 31562305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Photocaged Nanobodies for Intracellular Applications in an Animal Using Genetic Code Expansion and Computationally Guided Protein Engineering.
    O'Shea JM; Goutou A; Brydon J; Sethna CR; Wood CW; Greiss S
    Chembiochem; 2022 Aug; 23(16):e202200321. PubMed ID: 35731601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptides in headlock--a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy.
    Braun MB; Traenkle B; Koch PA; Emele F; Weiss F; Poetz O; Stehle T; Rothbauer U
    Sci Rep; 2016 Jan; 6():19211. PubMed ID: 26791954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel silk fibroin protein-based fusion system for enhancing the expression of nanobodies in Escherichia coli.
    Yu J; Guo Y; Gu Y; Fan X; Li F; Song H; Nian R; Liu W
    Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):1967-1977. PubMed ID: 35243528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a Nanobody-Epitope Tag Interaction and Its Application for Receptor Engineering.
    Cabalteja CC; Sachdev S; Cheloha RW
    ACS Chem Biol; 2022 Aug; 17(8):2296-2303. PubMed ID: 35930411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of IL-24/IL-20R2 complex formation using photocaged tyrosines and UV light.
    Pham PN; Zahradník J; Kolářová L; Schneider B; Fuertes G
    Front Mol Biosci; 2023; 10():1214235. PubMed ID: 37484532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery and Characterization of an ALFA-Tag-Specific Affinity Resin Optimized for Protein Purification at Low Temperatures in Physiological Buffer.
    Kilisch M; Götzke H; Gere-Becker M; Crauel A; Opazo F; Frey S
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33673130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein visualization and manipulation in
    Xu J; Kim AR; Cheloha RW; Fischer FA; Li JSS; Feng Y; Stoneburner E; Binari R; Mohr SE; Zirin J; Ploegh HL; Perrimon N
    Elife; 2022 Jan; 11():. PubMed ID: 35076390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and comparison of two peptide-tag specific nanobodies for immunoaffinity chromatography.
    Ren J; Zhang C; Ji F; Jia L
    J Chromatogr A; 2020 Aug; 1624():461227. PubMed ID: 32540069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide-Tag Specific Nanobodies for Studying Proteins in Live Cells.
    Fagbadebo FO; Rothbauer U
    Methods Mol Biol; 2022; 2446():555-579. PubMed ID: 35157294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective blocking of neuropilin-1activity using oligoclonal nanobodies targeting different epitopes.
    Karami E; Mesbahi Moghaddam M; Behdani M; Kazemi-Lomedasht F
    Prep Biochem Biotechnol; 2023; 53(5):523-531. PubMed ID: 35984637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a novel anti-EGFR nanobody by phage display and its distinct paratope and epitope via homology modeling and molecular docking.
    Xi X; Sun W; Su H; Zhang X; Sun F
    Mol Immunol; 2020 Dec; 128():165-174. PubMed ID: 33130376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nanobody that recognizes a 14-residue peptide epitope in the E2 ubiquitin-conjugating enzyme UBC6e modulates its activity.
    Ling J; Cheloha RW; McCaul N; Sun ZJ; Wagner G; Ploegh HL
    Mol Immunol; 2019 Oct; 114():513-523. PubMed ID: 31518855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanobody binding to a conserved epitope promotes norovirus particle disassembly.
    Koromyslova AD; Hansman GS
    J Virol; 2015 Mar; 89(5):2718-30. PubMed ID: 25520510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanobody-Mediated Neutralization Reveals an Achilles Heel for Norovirus.
    Koromyslova AD; Devant JM; Kilic T; Sabin CD; Malak V; Hansman GS
    J Virol; 2020 Jun; 94(13):. PubMed ID: 32321816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering.
    Verkhivker G
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Basis of Epitope Recognition by Heavy-Chain Camelid Antibodies.
    Zavrtanik U; Lukan J; Loris R; Lah J; Hadži S
    J Mol Biol; 2018 Oct; 430(21):4369-4386. PubMed ID: 30205092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.