BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35411594)

  • 1. The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases.
    Kobayashi T; Shinkawa H; Nagano AJ; Nishizawa NK
    Plant J; 2022 Jun; 110(6):1731-1750. PubMed ID: 35411594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice.
    Kobayashi T; Ozu A; Kobayashi S; An G; Jeon JS; Nishizawa NK
    Plant Mol Biol; 2019 Nov; 101(4-5):471-486. PubMed ID: 31552586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation.
    Kobayashi T; Nagasaka S; Senoura T; Itai RN; Nakanishi H; Nishizawa NK
    Nat Commun; 2013; 4():2792. PubMed ID: 24253678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Enhancement of iron Deficiency Tolerance and Iron Accumulation in Rice by Combining the Knockdown of OsHRZ Ubiquitin Ligases with the Introduction of Engineered Ferric-chelate Reductase.
    Kobayashi T; Maeda K; Suzuki Y; Nishizawa NK
    Rice (N Y); 2022 Oct; 15(1):54. PubMed ID: 36315339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.
    Kobayashi T; Itai RN; Senoura T; Oikawa T; Ishimaru Y; Ueda M; Nakanishi H; Nishizawa NK
    Plant Mol Biol; 2016 Jul; 91(4-5):533-47. PubMed ID: 27143046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice.
    Kobayashi T; Nagano AJ; Nishizawa NK
    J Exp Bot; 2021 Mar; 72(6):2196-2211. PubMed ID: 33206982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oryza sativa POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis.
    Zhang H; Li Y; Pu M; Xu P; Liang G; Yu D
    Plant Cell Environ; 2020 Jan; 43(1):261-274. PubMed ID: 31674679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants.
    El-Kereamy A; Bi YM; Mahmood K; Ranathunge K; Yaish MW; Nambara E; Rothstein SJ
    Front Plant Sci; 2015; 6():934. PubMed ID: 26579177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes.
    Kobayashi T; Itai RN; Ogo Y; Kakei Y; Nakanishi H; Takahashi M; Nishizawa NK
    Plant J; 2009 Dec; 60(6):948-61. PubMed ID: 19737364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice.
    Nijhawan A; Jain M; Tyagi AK; Khurana JP
    Plant Physiol; 2008 Feb; 146(2):333-50. PubMed ID: 18065552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).
    Wang B; Wei H; Xue Z; Zhang WH
    Ann Bot; 2017 Apr; 119(6):945-956. PubMed ID: 28065924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters.
    Yue W; Ying Y; Wang C; Zhao Y; Dong C; Whelan J; Shou H
    Plant J; 2017 Jun; 90(6):1040-1051. PubMed ID: 28229491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron sensors and signals in response to iron deficiency.
    Kobayashi T; Nishizawa NK
    Plant Sci; 2014 Jul; 224():36-43. PubMed ID: 24908504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IRONMAN peptide interacts with OsHRZ1 and OsHRZ2 to maintain Fe homeostasis in rice.
    Peng F; Li C; Lu C; Li Y; Xu P; Liang G
    J Exp Bot; 2022 Oct; 73(18):6463-6474. PubMed ID: 35789265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E3 ligase, the Oryza sativa salt-induced RING finger protein 4 (OsSIRP4), negatively regulates salt stress responses via degradation of the OsPEX11-1 protein.
    Kim JH; Jang CS
    Plant Mol Biol; 2021 Feb; 105(3):231-245. PubMed ID: 33079323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The E3 Ligase DROUGHT HYPERSENSITIVE Negatively Regulates Cuticular Wax Biosynthesis by Promoting the Degradation of Transcription Factor ROC4 in Rice.
    Wang Z; Tian X; Zhao Q; Liu Z; Li X; Ren Y; Tang J; Fang J; Xu Q; Bu Q
    Plant Cell; 2018 Jan; 30(1):228-244. PubMed ID: 29237723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa.
    Zheng L; Ying Y; Wang L; Wang F; Whelan J; Shou H
    BMC Plant Biol; 2010 Aug; 10():166. PubMed ID: 20699001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).
    Andrés-Bordería A; Andrés F; Garcia-Molina A; Perea-García A; Domingo C; Puig S; Peñarrubia L
    Plant Mol Biol; 2017 Sep; 95(1-2):17-32. PubMed ID: 28631167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice.
    Joo J; Lee YH; Song SI
    Planta; 2019 May; 249(5):1521-1533. PubMed ID: 30712129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rice HRZ ubiquitin ligases are crucial for response to excess iron.
    Aung MS; Kobayashi T; Masuda H; Nishizawa NK
    Physiol Plant; 2018 Apr; ():. PubMed ID: 29655221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.