BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35411713)

  • 1. A General Strategy for Kilogram-Scale Preparation of Highly Crystal-line Covalent Triazine Frameworks.
    Sun T; Liang Y; Luo W; Zhang L; Cao X; Xu Y
    Angew Chem Int Ed Engl; 2022 Jun; 61(25):e202203327. PubMed ID: 35411713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks.
    Sun T; Liang Y; Xu Y
    Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202113926. PubMed ID: 34741378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach.
    Sun R; Wang X; Wang X; Tan B
    Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202117668. PubMed ID: 35038216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Synthesis of a Covalent Triazine-Based Framework from Aromatic Amides.
    Yu SY; Mahmood J; Noh HJ; Seo JM; Jung SM; Shin SH; Im YK; Jeon IY; Baek JB
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8438-8442. PubMed ID: 29624829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystalline Covalent Triazine Frameworks by In Situ Oxidation of Alcohols to Aldehyde Monomers.
    Liu M; Huang Q; Wang S; Li Z; Li B; Jin S; Tan B
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):11968-11972. PubMed ID: 30059185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green and Scalable Synthesis of Atomic-Thin Crystalline Two-Dimensional Triazine Polymers with Ultrahigh Photocatalytic Properties.
    Wang C; Lyu P; Chen Z; Xu Y
    J Am Chem Soc; 2023 Jun; 145(23):12745-12754. PubMed ID: 37171112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Monomer Feeding Rate to Achieve Highly Crystalline Covalent Triazine Frameworks.
    Liu M; Jiang K; Ding X; Wang S; Zhang C; Liu J; Zhan Z; Cheng G; Li B; Chen H; Jin S; Tan B
    Adv Mater; 2019 May; 31(19):e1807865. PubMed ID: 30920709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystalline Dual-Porous Covalent Triazine Frameworks as a New Platform for Efficient Electrocatalysis.
    Cui K; Tang X; Xu X; Kou M; Lyu P; Xu Y
    Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202317664. PubMed ID: 38131249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting.
    Sun R; Tan B
    Chemistry; 2023 Mar; 29(17):e202203077. PubMed ID: 36504463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advancements in the Synthesis of Covalent Triazine Frameworks for Energy and Environmental Applications.
    Zhang Y; Jin S
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30960015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation Strategy for Highly Crystalline Covalent Triazine Frameworks: From Staggered AB to Eclipsed AA Stacking.
    Yang Z; Chen H; Wang S; Guo W; Wang T; Suo X; Jiang DE; Zhu X; Popovs I; Dai S
    J Am Chem Soc; 2020 Apr; 142(15):6856-6860. PubMed ID: 32220210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic Control and Multifunctional Properties of Fluorescent Covalent Triazine-Based Frameworks.
    Wang X; Zhang C; Zhao Y; Ren S; Jiang JX
    Macromol Rapid Commun; 2016 Feb; 37(4):323-9. PubMed ID: 26697782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent Triazine Frameworks Obtained from Nitrile Monomers for Sustainable CO
    Luo R; Xu W; Chen M; Liu X; Fang Y; Ji H
    ChemSusChem; 2020 Dec; 13(24):6509-6522. PubMed ID: 33118279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen Bond Activation by Pyridinic Nitrogen for the High Proton Conductivity of Covalent Triazine Framework Loaded with H
    Liu M; Deng WH; Wang X; Liu J; Jin S; Xu G; Tan B
    ChemSusChem; 2022 Dec; 15(23):e202201298. PubMed ID: 36184870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Covalent Triazine Frameworks as Heterogeneous Catalytic Supports.
    Tahir N; Krishnaraj C; Leus K; Van Der Voort P
    Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31405000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystalline Covalent Triazine Frameworks with Fibrous Morphology via a Low-Temperature Polycondensation of Planar Monomer.
    Liu J; Liu M; Wang X; Wang X; Tan B
    Small; 2022 May; 18(20):e2200984. PubMed ID: 35419938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient removal of three dyes using porous covalent triazine frameworks: adsorption mechanism and role of pore distribution.
    An F; Liu J; Xu Z; Zheng S
    Water Sci Technol; 2020 Dec; 82(12):3023-3031. PubMed ID: 33341790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water.
    Bi J; Fang W; Li L; Wang J; Liang S; He Y; Liu M; Wu L
    Macromol Rapid Commun; 2015 Oct; 36(20):1799-805. PubMed ID: 26292975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the Synthesis of Covalent Triazine Frameworks.
    Liao L; Li M; Yin Y; Chen J; Zhong Q; Du R; Liu S; He Y; Fu W; Zeng F
    ACS Omega; 2023 Feb; 8(5):4527-4542. PubMed ID: 36777586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layered S-Bridged Covalent Triazine Frameworks via a Bifunctional Template-Catalytic Strategy Enabling High-Performance Zinc-Ion Hybrid Supercapacitors.
    Liu B; Qian Y; Zhang J; Yang M; Liu Y; Zhang S
    Small; 2024 Feb; ():e2310884. PubMed ID: 38376170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.