These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35411713)
1. A General Strategy for Kilogram-Scale Preparation of Highly Crystal-line Covalent Triazine Frameworks. Sun T; Liang Y; Luo W; Zhang L; Cao X; Xu Y Angew Chem Int Ed Engl; 2022 Jun; 61(25):e202203327. PubMed ID: 35411713 [TBL] [Abstract][Full Text] [Related]
2. Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Sun T; Liang Y; Xu Y Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202113926. PubMed ID: 34741378 [TBL] [Abstract][Full Text] [Related]
3. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Sun R; Wang X; Wang X; Tan B Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202117668. PubMed ID: 35038216 [TBL] [Abstract][Full Text] [Related]
4. Direct Synthesis of a Covalent Triazine-Based Framework from Aromatic Amides. Yu SY; Mahmood J; Noh HJ; Seo JM; Jung SM; Shin SH; Im YK; Jeon IY; Baek JB Angew Chem Int Ed Engl; 2018 Jul; 57(28):8438-8442. PubMed ID: 29624829 [TBL] [Abstract][Full Text] [Related]
5. Crystalline Covalent Triazine Frameworks by In Situ Oxidation of Alcohols to Aldehyde Monomers. Liu M; Huang Q; Wang S; Li Z; Li B; Jin S; Tan B Angew Chem Int Ed Engl; 2018 Sep; 57(37):11968-11972. PubMed ID: 30059185 [TBL] [Abstract][Full Text] [Related]
6. Green and Scalable Synthesis of Atomic-Thin Crystalline Two-Dimensional Triazine Polymers with Ultrahigh Photocatalytic Properties. Wang C; Lyu P; Chen Z; Xu Y J Am Chem Soc; 2023 Jun; 145(23):12745-12754. PubMed ID: 37171112 [TBL] [Abstract][Full Text] [Related]
7. Controlling Monomer Feeding Rate to Achieve Highly Crystalline Covalent Triazine Frameworks. Liu M; Jiang K; Ding X; Wang S; Zhang C; Liu J; Zhan Z; Cheng G; Li B; Chen H; Jin S; Tan B Adv Mater; 2019 May; 31(19):e1807865. PubMed ID: 30920709 [TBL] [Abstract][Full Text] [Related]
8. Crystalline Dual-Porous Covalent Triazine Frameworks as a New Platform for Efficient Electrocatalysis. Cui K; Tang X; Xu X; Kou M; Lyu P; Xu Y Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202317664. PubMed ID: 38131249 [TBL] [Abstract][Full Text] [Related]
9. Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting. Sun R; Tan B Chemistry; 2023 Mar; 29(17):e202203077. PubMed ID: 36504463 [TBL] [Abstract][Full Text] [Related]
10. Recent Advancements in the Synthesis of Covalent Triazine Frameworks for Energy and Environmental Applications. Zhang Y; Jin S Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30960015 [TBL] [Abstract][Full Text] [Related]
11. Transformation Strategy for Highly Crystalline Covalent Triazine Frameworks: From Staggered AB to Eclipsed AA Stacking. Yang Z; Chen H; Wang S; Guo W; Wang T; Suo X; Jiang DE; Zhu X; Popovs I; Dai S J Am Chem Soc; 2020 Apr; 142(15):6856-6860. PubMed ID: 32220210 [TBL] [Abstract][Full Text] [Related]
12. Synthetic Control and Multifunctional Properties of Fluorescent Covalent Triazine-Based Frameworks. Wang X; Zhang C; Zhao Y; Ren S; Jiang JX Macromol Rapid Commun; 2016 Feb; 37(4):323-9. PubMed ID: 26697782 [TBL] [Abstract][Full Text] [Related]
13. Covalent Triazine Frameworks Obtained from Nitrile Monomers for Sustainable CO Luo R; Xu W; Chen M; Liu X; Fang Y; Ji H ChemSusChem; 2020 Dec; 13(24):6509-6522. PubMed ID: 33118279 [TBL] [Abstract][Full Text] [Related]
14. Hydrogen Bond Activation by Pyridinic Nitrogen for the High Proton Conductivity of Covalent Triazine Framework Loaded with H Liu M; Deng WH; Wang X; Liu J; Jin S; Xu G; Tan B ChemSusChem; 2022 Dec; 15(23):e202201298. PubMed ID: 36184870 [TBL] [Abstract][Full Text] [Related]
15. Development of Covalent Triazine Frameworks as Heterogeneous Catalytic Supports. Tahir N; Krishnaraj C; Leus K; Van Der Voort P Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31405000 [TBL] [Abstract][Full Text] [Related]
16. Crystalline Covalent Triazine Frameworks with Fibrous Morphology via a Low-Temperature Polycondensation of Planar Monomer. Liu J; Liu M; Wang X; Wang X; Tan B Small; 2022 May; 18(20):e2200984. PubMed ID: 35419938 [TBL] [Abstract][Full Text] [Related]
17. Efficient removal of three dyes using porous covalent triazine frameworks: adsorption mechanism and role of pore distribution. An F; Liu J; Xu Z; Zheng S Water Sci Technol; 2020 Dec; 82(12):3023-3031. PubMed ID: 33341790 [TBL] [Abstract][Full Text] [Related]
18. Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water. Bi J; Fang W; Li L; Wang J; Liang S; He Y; Liu M; Wu L Macromol Rapid Commun; 2015 Oct; 36(20):1799-805. PubMed ID: 26292975 [TBL] [Abstract][Full Text] [Related]
19. Advances in the Synthesis of Covalent Triazine Frameworks. Liao L; Li M; Yin Y; Chen J; Zhong Q; Du R; Liu S; He Y; Fu W; Zeng F ACS Omega; 2023 Feb; 8(5):4527-4542. PubMed ID: 36777586 [TBL] [Abstract][Full Text] [Related]
20. Layered S-Bridged Covalent Triazine Frameworks via a Bifunctional Template-Catalytic Strategy Enabling High-Performance Zinc-Ion Hybrid Supercapacitors. Liu B; Qian Y; Zhang J; Yang M; Liu Y; Zhang S Small; 2024 Jul; 20(30):e2310884. PubMed ID: 38376170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]