BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35412191)

  • 1. A new membrane formulation for modelling the flow of stomatocyte, discocyte, and echinocyte red blood cells.
    Karandeniya DMW; Holmes DW; Sauret E; Gu YT
    Biomech Model Mechanobiol; 2022 Jun; 21(3):899-917. PubMed ID: 35412191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Enhanced Spring-Particle Model for Red Blood Cell Structural Mechanics: Application to the Stomatocyte-Discocyte-Echinocyte Transformation.
    Chen M; Boyle FJ
    J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28813551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies.
    Geekiyanage NM; Balanant MA; Sauret E; Saha S; Flower R; Lim CT; Gu Y
    PLoS One; 2019; 14(4):e0215447. PubMed ID: 31002688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulations of deformation and aggregation of red blood cells in shear flow.
    Low HT; Ju M; Sui Y; Nazir T; Namgung B; Kim S
    Crit Rev Biomed Eng; 2013; 41(4-5):425-34. PubMed ID: 24941417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red blood cell simulation using a coupled shell-fluid analysis purely based on the SPH method.
    Soleimani M; Sahraee S; Wriggers P
    Biomech Model Mechanobiol; 2019 Apr; 18(2):347-359. PubMed ID: 30377857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle-based simulations of red blood cells-A review.
    Ye T; Phan-Thien N; Lim CT
    J Biomech; 2016 Jul; 49(11):2255-2266. PubMed ID: 26706718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.
    Vahidkhah K; Fatouraee N
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of numerical methods for red blood cell flow simulation.
    Ju M; Ye SS; Namgung B; Cho S; Low HT; Leo HL; Kim S
    Comput Methods Biomech Biomed Engin; 2015; 18(2):130-40. PubMed ID: 23582050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red cell rheology in stomatocyte-echinocyte transformation: roles of cell geometry and cell shape.
    Reinhart WH; Chien S
    Blood; 1986 Apr; 67(4):1110-8. PubMed ID: 3955230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows.
    Ye T; Phan-Thien N; Lim CT; Peng L; Shi H
    Phys Rev E; 2017 Jun; 95(6-1):063314. PubMed ID: 28709282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation on red blood cell flow based on unstructured grid.
    Li G; Chen B; Wang X
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3647. PubMed ID: 36166288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased resistance to membrane deformation of shape-transformed human red blood cells.
    Chabanel A; Reinhart W; Chien S
    Blood; 1987 Mar; 69(3):739-43. PubMed ID: 3814814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic properties of the red blood cell membrane that determine echinocyte deformability.
    Kuzman D; Svetina S; Waugh RE; Zeks B
    Eur Biophys J; 2004 Feb; 33(1):1-15. PubMed ID: 13680208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions.
    Ye SS; Ng YC; Tan J; Leo HL; Kim S
    Theor Biol Med Model; 2014 May; 11():19. PubMed ID: 24885482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R; Wei Y; Wu C; Sun L; Zheng W
    Comput Math Methods Med; 2018; 2018():9425375. PubMed ID: 29681999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep ensemble learning enables highly accurate classification of stored red blood cell morphology.
    Routt AH; Yang N; Piety NZ; Lu M; Shevkoplyas SS
    Sci Rep; 2023 Feb; 13(1):3152. PubMed ID: 36823298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of radiofrequency energy stored in the altered shapes: Stomatocyte-echinocyte of human erythrocytes.
    Muñoz S; Sebastián JL; Sancho M; Martínez G
    Bioelectrochemistry; 2010 Feb; 77(2):158-61. PubMed ID: 19665436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.