These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35412664)

  • 1. Warming drives sustained plant phosphorus demand in a humid tropical forest.
    Lie Z; Zhou G; Huang W; Kadowaki K; Tissue DT; Yan J; Peñuelas J; Sardans J; Li Y; Liu S; Chu G; Meng Z; He X; Liu J
    Glob Chang Biol; 2022 Jul; 28(13):4085-4096. PubMed ID: 35412664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warming leads to more closed nitrogen cycling in nitrogen-rich tropical forests.
    Lie Z; Huang W; Liu X; Zhou G; Yan J; Li Y; Huang C; Wu T; Fang X; Zhao M; Liu S; Chu G; Kadowaki K; Pan X; Liu J
    Glob Chang Biol; 2021 Feb; 27(3):664-674. PubMed ID: 33140554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient cycling in forests.
    Attiwill PM; Adams MA
    New Phytol; 1993 Aug; 124(4):561-582. PubMed ID: 33874438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient.
    Nottingham AT; Whitaker J; Ostle NJ; Bardgett RD; McNamara NP; Fierer N; Salinas N; Ccahuana AJQ; Turner BL; Meir P
    Ecol Lett; 2019 Nov; 22(11):1889-1899. PubMed ID: 31489760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests.
    Gross A; Lin Y; Weber PK; Pett-Ridge J; Silver WL
    Ecology; 2020 Feb; 101(2):e02928. PubMed ID: 31715005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis.
    Cleveland CC; Townsend AR; Taylor P; Alvarez-Clare S; Bustamante MM; Chuyong G; Dobrowski SZ; Grierson P; Harms KE; Houlton BZ; Marklein A; Parton W; Porder S; Reed SC; Sierra CA; Silver WL; Tanner EV; Wieder WR
    Ecol Lett; 2011 Sep; 14(9):939-47. PubMed ID: 21749602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foliar nutrient resorption stoichiometry and microbial phosphatase catalytic efficiency together alleviate the relative phosphorus limitation in forest ecosystems.
    Peng Z; Wu Y; Guo L; Yang L; Wang B; Wang X; Liu W; Su Y; Wu J; Liu L
    New Phytol; 2023 May; 238(3):1033-1044. PubMed ID: 36751890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes.
    Wood TE; Cavaleri MA; Reed SC
    Biol Rev Camb Philos Soc; 2012 Nov; 87(4):912-27. PubMed ID: 22607308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests.
    Metcalfe DB; Asner GP; Martin RE; Silva Espejo JE; Huasco WH; Farfán Amézquita FF; Carranza-Jimenez L; Galiano Cabrera DF; Baca LD; Sinca F; Huaraca Quispe LP; Taype IA; Mora LE; Dávila AR; Solórzano MM; Puma Vilca BL; Laupa Román JM; Guerra Bustios PC; Revilla NS; Tupayachi R; Girardin CA; Doughty CE; Malhi Y
    Ecol Lett; 2014 Mar; 17(3):324-32. PubMed ID: 24372865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes.
    Nottingham AT; Bååth E; Reischke S; Salinas N; Meir P
    Glob Chang Biol; 2019 Mar; 25(3):827-838. PubMed ID: 30372571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil carbon loss by experimental warming in a tropical forest.
    Nottingham AT; Meir P; Velasquez E; Turner BL
    Nature; 2020 Aug; 584(7820):234-237. PubMed ID: 32788738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses.
    Tian Y; Shi C; Malo CU; Kwatcho Kengdo S; Heinzle J; Inselsbacher E; Ottner F; Borken W; Michel K; Schindlbacher A; Wanek W
    Nat Commun; 2023 Feb; 14(1):864. PubMed ID: 36792624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecosystem carbon storage does not vary with mean annual temperature in Hawaiian tropical montane wet forests.
    Selmants PC; Litton CM; Giardina CP; Asner GP
    Glob Chang Biol; 2014 Sep; 20(9):2927-37. PubMed ID: 24838341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urgent need for warming experiments in tropical forests.
    Cavaleri MA; Reed SC; Smith WK; Wood TE
    Glob Chang Biol; 2015 Jun; 21(6):2111-21. PubMed ID: 25641092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disentangling the long-term effects of disturbance on soil biogeochemistry in a wet tropical forest ecosystem.
    Gutiérrez Del Arroyo O; Silver WL
    Glob Chang Biol; 2018 Apr; 24(4):1673-1684. PubMed ID: 29265556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization.
    Matson AL; Corre MD; Veldkamp E
    Glob Chang Biol; 2014 Dec; 20(12):3802-13. PubMed ID: 24965673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate implications on forest above- and belowground carbon allocation patterns along a tropical elevation gradient on Mt. Kilimanjaro (Tanzania).
    Sierra Cornejo N; Leuschner C; Becker JN; Hemp A; Schellenberger Costa D; Hertel D
    Oecologia; 2021 Mar; 195(3):797-812. PubMed ID: 33630169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Evolution pattern of phytolith-occluded carbon in typical forest-soil ecosystems in tropics and subtropics, China.].
    He SQ; Huang ZT; Wu JS; Yang J; Jiang PK
    Ying Yong Sheng Tai Xue Bao; 2016 Mar; 27(3):697-704. PubMed ID: 29726173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling.
    Feng X; Uriarte M; González G; Reed S; Thompson J; Zimmerman JK; Murphy L
    Glob Chang Biol; 2018 Jan; 24(1):e213-e232. PubMed ID: 28804989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.
    Kotowska MM; Leuschner C; Triadiati T; Hertel D
    Oecologia; 2016 Feb; 180(2):601-18. PubMed ID: 26546083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.