These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35412686)

  • 1. Scale-up issues during sterile filtration of glycoconjugate vaccines.
    Du Z; Motevalian SP; Carrillo Conde B; Reilly K; Zydney AL
    Biotechnol Prog; 2022 Jul; 38(4):e3260. PubMed ID: 35412686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fouling Behavior during Sterile Filtration of Different Glycoconjugate Serotypes Used in Conjugate Vaccines.
    Emami P; Fallahianbijan F; Dinse E; Motevalian SP; Conde BC; Reilly K; Zydney AL
    Pharm Res; 2021 Jan; 38(1):155-163. PubMed ID: 33438097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prefiltration enhances performance of sterile filtration for glycoconjugate vaccines.
    Du Z; Motevalian SP; Carillo-Conde B; Reilly K; Zydney AL
    Biotechnol Prog; 2021 Sep; 37(5):e3180. PubMed ID: 34106522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sterile filtration of a multi-serotype glycoconjugate vaccine drug product.
    Du Z; Gill K; Toprani V; Zydney AL
    Biotechnol Bioeng; 2023 May; 120(5):1316-1322. PubMed ID: 36726046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filtration of a multi-serotype glycoconjugate vaccine drug product through sterilizing grade 0.2/0.22 µm pore size filters.
    Du Z; Qiu S; Gill K; Toprani V; Zydney AL
    Biotechnol J; 2024 Feb; 19(2):e2300450. PubMed ID: 38403435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scale-up of Sterilizing-grade Membrane Filters from Discs to Pleated Cartridges: Effects of Operating Parameters and Solution Properties.
    Kumar A; Martin J; Kuriyel R
    PDA J Pharm Sci Technol; 2015; 69(1):74-87. PubMed ID: 25691716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling from discs to pleated devices.
    Giglia S; Yavorsky D
    PDA J Pharm Sci Technol; 2007; 61(4):314-23. PubMed ID: 17933212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-dependent fouling behavior during sterile filtration of mRNA-containing lipid nanoparticles.
    Messerian KO; Zverev A; Kramarczyk JF; Zydney AL
    Biotechnol Bioeng; 2022 Nov; 119(11):3221-3229. PubMed ID: 35906785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein fouling during constant-flux virus filtration: Mechanisms and modeling.
    Peles J; Cacace B; Carbrello C; Giglia S; Zydney AL
    Biotechnol Bioeng; 2023 Nov; 120(11):3357-3367. PubMed ID: 37489799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalability of Sterilizing-Grade Filters in Different Filtration Modes.
    Jannik D; Sebastian H; BjÖrn H; Thomas L
    PDA J Pharm Sci Technol; 2020; 74(6):644-659. PubMed ID: 32675307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.
    Allmendinger A; Mueller R; Huwyler J; Mahler HC; Fischer S
    J Pharm Sci; 2015 Oct; 104(10):3319-29. PubMed ID: 26149748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the Effect of the Volume Throughput and Maximum Flux of Low-Surface-Tension Fluids on Bacterial Penetration of 0.2 Micron-Rated Filters during Process-Specific Filter Validation Testing.
    Folmsbee M
    PDA J Pharm Sci Technol; 2015; 69(2):307-16. PubMed ID: 25868996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a sterile filtration process for viral vaccines using a model nanoparticle suspension.
    Taylor N; Ma W; Kristopeit A; Wang SC; Zydney AL
    Biotechnol Bioeng; 2021 Jan; 118(1):106-115. PubMed ID: 32880898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified Bundle of Capillaries Approximation of Sterilizing Filter Membranes and its use for Filter Characterization and Filtration Process Optimization.
    Zakrewsky M; Hoopes P
    J Pharm Sci; 2022 Feb; 111(2):382-394. PubMed ID: 34600942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Host Cell Impurity Effects on the Performance of Sterile Filtration Processes for Therapeutic Viruses.
    Wright E; Kawka K; Medina MFC; Latulippe DR
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unified membrane fouling index for low pressure membrane filtration of natural waters: principles and methodology.
    Huang H; Young TA; Jacangelo JG
    Environ Sci Technol; 2008 Feb; 42(3):714-20. PubMed ID: 18323092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of isoporous microslit silicon nitride membranes for sterile filtration applications.
    Wright E; Miller JJ; Csordas M; Gosselin AR; Carter JA; McGrath JL; Latulippe DR; Roussie JA
    Biotechnol Bioeng; 2020 Mar; 117(3):879-885. PubMed ID: 31784974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling flux in tangential flow filtration using a reverse asymmetric membrane for Chinese hamster ovary cell clarification.
    Zhang D; Patel P; Strauss D; Qian X; Wickramasinghe SR
    Biotechnol Prog; 2021 May; 37(3):e3115. PubMed ID: 33350596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane fouling in sterile filtration of recombinant human growth hormone.
    Maa YF; Hsu CC
    Biotechnol Bioeng; 1996 May; 50(3):319-28. PubMed ID: 18626959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of polysaccharide and protein interactions on membrane fouling: Particle deposition and layer formation.
    Zhang C; Bao Q; Wu H; Shao M; Wang X; Xu Q
    Chemosphere; 2022 Jun; 296():134056. PubMed ID: 35192853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.