These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35412767)
41. Methanogen Productivity and Microbial Community Composition Varies With Iron Oxide Mineralogy. Gadol HJ; Elsherbini J; Kocar BD Front Microbiol; 2021; 12():705501. PubMed ID: 35250895 [TBL] [Abstract][Full Text] [Related]
42. Ferrihydrite Growth and Transformation in the Presence of Ferrous Iron and Model Organic Ligands. ThomasArrigo LK; Kaegi R; Kretzschmar R Environ Sci Technol; 2019 Dec; 53(23):13636-13647. PubMed ID: 31718167 [TBL] [Abstract][Full Text] [Related]
43. Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite. Shi Z; Zachara JM; Shi L; Wang Z; Moore DA; Kennedy DW; Fredrickson JK Environ Sci Technol; 2012 Nov; 46(21):11644-52. PubMed ID: 22985396 [TBL] [Abstract][Full Text] [Related]
44. Influence of iron (hydr)oxide mineralogy and contents in aquifer sediments on dissolved organic carbon attenuations during aquifer storage and recovery. Anggraini TM; An S; Kim SH; Kwon MJ; Chung J; Lee S Chemosphere; 2024 Mar; 351():141196. PubMed ID: 38218241 [TBL] [Abstract][Full Text] [Related]
45. Reductive dissolution of ferrihydrite by ascorbic acid and the inhibiting effect of phospholipid. Debnath S; Hausner DB; Strongin DR; Kubicki J J Colloid Interface Sci; 2010 Jan; 341(2):215-23. PubMed ID: 19854447 [TBL] [Abstract][Full Text] [Related]
46. The effect of iron oxide types on the photochemical transformation of organic phosphorus in water. Wang J; Li F; Wang M; Wang H; Elgarhy AH; Liu G; Zhang L; Hu R Chemosphere; 2022 Nov; 307(Pt 2):135900. PubMed ID: 35944668 [TBL] [Abstract][Full Text] [Related]
47. Reaction of hydroquinone with hematite; II. Calculated electron-transfer rates and comparison to the reductive dissolution rate. Stack AG; Rosso KM; Smith DM; Eggleston CM J Colloid Interface Sci; 2004 Jun; 274(2):442-50. PubMed ID: 15144815 [TBL] [Abstract][Full Text] [Related]
48. Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: synthesis, characterization, and reactivity. Wang Q; Snyder S; Kim J; Choi H Environ Sci Technol; 2009 May; 43(9):3292-9. PubMed ID: 19534149 [TBL] [Abstract][Full Text] [Related]
49. Effect of Shewanella oneidensis on the Kinetics of Fe(II)-Catalyzed Transformation of Ferrihydrite to Crystalline Iron Oxides. Xiao W; Jones AM; Li X; Collins RN; Waite TD Environ Sci Technol; 2018 Jan; 52(1):114-123. PubMed ID: 29205031 [TBL] [Abstract][Full Text] [Related]
50. Influence of pH on the Kinetics and Mechanism of Photoreductive Dissolution of Amorphous Iron Oxyhydroxide in the Presence of Natural Organic Matter: Implications to Iron Bioavailability in Surface Waters. Garg S; Xing G; Waite TD Environ Sci Technol; 2020 Jun; 54(11):6771-6780. PubMed ID: 32379429 [TBL] [Abstract][Full Text] [Related]
51. Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. Handler RM; Beard BL; Johnson CM; Scherer MM Environ Sci Technol; 2009 Feb; 43(4):1102-7. PubMed ID: 19320165 [TBL] [Abstract][Full Text] [Related]
52. Decoupling of arsenic and iron release from ferrihydrite suspension under reducing conditions: a biogeochemical model. Burnol A; Garrido F; Baranger P; Joulian C; Dictor MC; Bodénan F; Morin G; Charlet L Geochem Trans; 2007 Nov; 8():12. PubMed ID: 18047666 [TBL] [Abstract][Full Text] [Related]
53. Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles. Lyngsie G; Krumina L; Tunlid A; Persson P Sci Rep; 2018 Jul; 8(1):10834. PubMed ID: 30018415 [TBL] [Abstract][Full Text] [Related]
54. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III). Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520 [TBL] [Abstract][Full Text] [Related]
55. Synergistic effect of reductive and ligand-promoted dissolution of goethite. Wang Z; Schenkeveld WD; Kraemer SM; Giammar DE Environ Sci Technol; 2015 Jun; 49(12):7236-44. PubMed ID: 25965980 [TBL] [Abstract][Full Text] [Related]
56. A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids. Moens C; Waegeneers N; Fritzsche A; Nobels P; Smolders E J Chromatogr A; 2019 Aug; 1599():203-214. PubMed ID: 31047657 [TBL] [Abstract][Full Text] [Related]
57. Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene. Paul L; Smolders E Chemosphere; 2014 Sep; 111():471-7. PubMed ID: 24997954 [TBL] [Abstract][Full Text] [Related]
58. Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination. Han C; Machala L; Medrik I; Prucek R; Kralchevska RP; Dionysiou DD Environ Sci Pollut Res Int; 2017 Aug; 24(23):19435-19443. PubMed ID: 28677041 [TBL] [Abstract][Full Text] [Related]
59. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite. Ehlert K; Mikutta C; Kretzschmar R Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611 [TBL] [Abstract][Full Text] [Related]
60. [Spectral analysis of FeOOH prepared through hydrolysis and neutralization of ferric solutions under different conditions]. Xiong HX; Liang JR; Xu YQ; Zhou LX Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):2005-9. PubMed ID: 19798993 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]