These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35412767)

  • 61. Effect of manganese oxides on arsenic speciation and mobilization in different arsenic-adsorbed iron-minerals under microbially-reducing conditions.
    Liu X; Cai X; Wang P; Yin N; Fan C; Chang X; Huang X; Du X; Wang S; Cui Y
    J Hazard Mater; 2023 Mar; 445():130602. PubMed ID: 37055999
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200.
    Arnold RG; DiChristina TJ; Hoffmann MR
    Biotechnol Bioeng; 1988 Oct; 32(9):1081-96. PubMed ID: 18587827
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Proton-promoted dissolution of α-FeOOH nanorods and microrods: size dependence, anion effects (carbonate and phosphate), aggregation and surface adsorption.
    Rubasinghege G; Kyei PK; Scherer MM; Grassian VH
    J Colloid Interface Sci; 2012 Nov; 385(1):15-23. PubMed ID: 22867861
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology.
    Braunschweig J; Bosch J; Heister K; Kuebeck C; Meckenstock RU
    J Microbiol Methods; 2012 Apr; 89(1):41-8. PubMed ID: 22349079
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Iron speciation at the riverbank surface in wetland and potential impact on the mobility of trace metals.
    Ratié G; Vantelon D; Lotfi Kalahroodi E; Bihannic I; Pierson-Wickmann AC; Davranche M
    Sci Total Environ; 2019 Feb; 651(Pt 1):443-455. PubMed ID: 30243164
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Understanding the Importance of Labile Fe(III) during Fe(II)-Catalyzed Transformation of Metastable Iron Oxyhydroxides.
    Liu J; Sheng A; Li X; Arai Y; Ding Y; Nie M; Yan M; Rosso KM
    Environ Sci Technol; 2022 Mar; 56(6):3801-3811. PubMed ID: 35188748
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy, and reactivity of iron(III) precipitates.
    Violante A; Del Gaudio S; Pigna M; Ricciardella M; Banerjee D
    Environ Sci Technol; 2007 Dec; 41(24):8275-80. PubMed ID: 18200851
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reactivity of Uranium and Ferrous Iron with Natural Iron Oxyhydroxides.
    Stewart BD; Cismasu AC; Williams KH; Peyton BM; Nico PS
    Environ Sci Technol; 2015 Sep; 49(17):10357-65. PubMed ID: 26226398
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Degradation of drinking water disinfection byproducts by synthetic goethite and magnetite.
    Chun CL; Hozalski RM; Arnold WA
    Environ Sci Technol; 2005 Nov; 39(21):8525-32. PubMed ID: 16294897
    [TBL] [Abstract][Full Text] [Related]  

  • 71. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite.
    Coker VS; Gault AG; Pearce CI; van der Laan G; Telling ND; Charnock JM; Polya DA; Lloyd JR
    Environ Sci Technol; 2006 Dec; 40(24):7745-50. PubMed ID: 17256522
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reoxidation of reduced uranium with iron(III) (hydr)oxides under sulfate-reducing conditions.
    Sani RK; Peyton BM; Dohnalkova A; Amonette JE
    Environ Sci Technol; 2005 Apr; 39(7):2059-66. PubMed ID: 15871237
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of phosphate on the particle size of ferric oxyhydroxides anchored onto activated carbon: As(V) removal from water.
    Arcibar-Orozco JA; Avalos-Borja M; Rangel-Mendez JR
    Environ Sci Technol; 2012 Sep; 46(17):9577-83. PubMed ID: 22882013
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mediated Electrochemical Reduction of Iron (Oxyhydr-)Oxides under Defined Thermodynamic Boundary Conditions.
    Aeppli M; Voegelin A; Gorski CA; Hofstetter TB; Sander M
    Environ Sci Technol; 2018 Jan; 52(2):560-570. PubMed ID: 29200267
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Uranium retention on iron oxyhydroxides in post-mining environmental conditions.
    Lahrouch F; Guo N; Hunault MOJY; Solari PL; Descostes M; Gerard M
    Chemosphere; 2021 Feb; 264(Pt 1):128473. PubMed ID: 33035952
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of carbonate on ferrihydrite transformation in alkaline media.
    Li Y; Zhang C; Yang M; Liu J; He H; Ma Y; Arai Y
    Environ Sci Process Impacts; 2024 Feb; 26(2):288-297. PubMed ID: 38258502
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni.
    Chun CL; Baer DR; Matson DW; Amonette JE; Penn RL
    Environ Sci Technol; 2010 Jul; 44(13):5079-85. PubMed ID: 20509654
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enriched Iron(III)-Reducing Bacterial Communities are Shaped by Carbon Substrate and Iron Oxide Mineralogy.
    Lentini CJ; Wankel SD; Hansel CM
    Front Microbiol; 2012; 3():404. PubMed ID: 23316187
    [TBL] [Abstract][Full Text] [Related]  

  • 80. New Sustainable, Scalable and One-Step Synthesis of Iron Oxide Nanoparticles by Ion Exchange Process.
    Macera L; Daniele V; Mondelli C; Capron M; Taglieri G
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33804704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.