These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35412813)
1. Protein Cofactor Mimics Disrupt Essential Chaperone Function in Stressed Mycobacteria. Nelson B; Hong SH; Lupoli TJ ACS Infect Dis; 2022 May; 8(5):901-910. PubMed ID: 35412813 [TBL] [Abstract][Full Text] [Related]
2. Reconstitution of a Mycobacterium tuberculosis proteostasis network highlights essential cofactor interactions with chaperone DnaK. Lupoli TJ; Fay A; Adura C; Glickman MS; Nathan CF Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7947-E7956. PubMed ID: 27872278 [TBL] [Abstract][Full Text] [Related]
3. HtpG Is a Metal-Dependent Chaperone Which Assists the DnaK/DnaJ/GrpE Chaperone System of Mycobacterium tuberculosis via Direct Association with DnaJ2. Mangla N; Singh R; Agarwal N Microbiol Spectr; 2023 Jun; 11(3):e0031223. PubMed ID: 37022172 [TBL] [Abstract][Full Text] [Related]
4. Bacterial J-Domains with C-Terminal Tags Contact the Substrate Binding Domain of DnaK and Sequester Chaperone Activity. Nelson B; Soper N; Lupoli TJ Chembiochem; 2023 Oct; 24(20):e202300261. PubMed ID: 37556312 [TBL] [Abstract][Full Text] [Related]
5. An allosteric inhibitor of bacterial Hsp70 chaperone potentiates antibiotics and mitigates resistance. Hosfelt J; Richards A; Zheng M; Adura C; Nelson B; Yang A; Fay A; Resager W; Ueberheide B; Glickman JF; Lupoli TJ Cell Chem Biol; 2022 May; 29(5):854-869.e9. PubMed ID: 34818532 [TBL] [Abstract][Full Text] [Related]
7. A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. Karzai AW; McMacken R J Biol Chem; 1996 May; 271(19):11236-46. PubMed ID: 8626673 [TBL] [Abstract][Full Text] [Related]
8. Mutations in the interdomain linker region of DnaK abolish the chaperone action of the DnaK/DnaJ/GrpE system. Han W; Christen P FEBS Lett; 2001 May; 497(1):55-8. PubMed ID: 11376662 [TBL] [Abstract][Full Text] [Related]
9. The DnaK Chaperone System Buffers the Fitness Cost of Antibiotic Resistance Mutations in Mycobacteria. Fay A; Philip J; Saha P; Hendrickson RC; Glickman MS; Burns-Huang K mBio; 2021 Mar; 12(2):. PubMed ID: 33785614 [TBL] [Abstract][Full Text] [Related]
10. An essential nonredundant role for mycobacterial DnaK in native protein folding. Fay A; Glickman MS PLoS Genet; 2014 Jul; 10(7):e1004516. PubMed ID: 25058675 [TBL] [Abstract][Full Text] [Related]
11. The Hsc66-Hsc20 chaperone system in Escherichia coli: chaperone activity and interactions with the DnaK-DnaJ-grpE system. Silberg JJ; Hoff KG; Vickery LE J Bacteriol; 1998 Dec; 180(24):6617-24. PubMed ID: 9852006 [TBL] [Abstract][Full Text] [Related]
12. Modulation of DNA-binding activity of Mycobacterium tuberculosis HspR by chaperones. Das Gupta T; Bandyopadhyay B; Das Gupta SK Microbiology (Reading); 2008 Feb; 154(Pt 2):484-490. PubMed ID: 18227252 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787 [TBL] [Abstract][Full Text] [Related]
14. Complementary protocols to evaluate inhibitors against the DnaK chaperone network. Richards A; Yawson GK; Nelson B; Lupoli TJ STAR Protoc; 2022 Jun; 3(2):101381. PubMed ID: 35600924 [TBL] [Abstract][Full Text] [Related]
15. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. Pierpaoli EV; Sandmeier E; Baici A; Schönfeld HJ; Gisler S; Christen P J Mol Biol; 1997 Jun; 269(5):757-68. PubMed ID: 9223639 [TBL] [Abstract][Full Text] [Related]
16. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. Rüdiger S; Schneider-Mergener J; Bukau B EMBO J; 2001 Mar; 20(5):1042-50. PubMed ID: 11230128 [TBL] [Abstract][Full Text] [Related]
17. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE. Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122 [TBL] [Abstract][Full Text] [Related]
18. Divergent effects of ATP on the binding of the DnaK and DnaJ chaperones to each other, or to their various native and denatured protein substrates. Wawrzynów A; Zylicz M J Biol Chem; 1995 Aug; 270(33):19300-6. PubMed ID: 7642605 [TBL] [Abstract][Full Text] [Related]
19. Functional characterisation of the chaperones DnaK, DnaJ, and GrpE from Clostridium acetobutylicum. Rüngeling E; Laufen T; Bahl H FEMS Microbiol Lett; 1999 Jan; 170(1):119-23. PubMed ID: 9919660 [TBL] [Abstract][Full Text] [Related]
20. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK. Landry SJ Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]