These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35412813)
21. Control of the DnaK chaperone cycle by substoichiometric concentrations of the co-chaperones DnaJ and GrpE. Pierpaoli EV; Sandmeier E; Schönfeld HJ; Christen P J Biol Chem; 1998 Mar; 273(12):6643-9. PubMed ID: 9506960 [TBL] [Abstract][Full Text] [Related]
22. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944 [TBL] [Abstract][Full Text] [Related]
23. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. Schröder H; Langer T; Hartl FU; Bukau B EMBO J; 1993 Nov; 12(11):4137-44. PubMed ID: 7900997 [TBL] [Abstract][Full Text] [Related]
24. Mycobacterium tuberculosis Rv0991c Is a Redox-Regulated Molecular Chaperone. Becker SH; Ulrich K; Dhabaria A; Ueberheide B; Beavers W; Skaar EP; Iyer LM; Aravind L; Jakob U; Darwin KH mBio; 2020 Aug; 11(4):. PubMed ID: 32843553 [TBL] [Abstract][Full Text] [Related]
25. Role of the J-domain in the cooperation of Hsp40 with Hsp70. Greene MK; Maskos K; Landry SJ Proc Natl Acad Sci U S A; 1998 May; 95(11):6108-13. PubMed ID: 9600925 [TBL] [Abstract][Full Text] [Related]
26. DnaK dependence of the mycobacterial stress-responsive regulator HspR is mediated through its hydrophobic C-terminal tail. Bandyopadhyay B; Das Gupta T; Roy D; Das Gupta SK J Bacteriol; 2012 Sep; 194(17):4688-97. PubMed ID: 22753065 [TBL] [Abstract][Full Text] [Related]
27. Analysis of the function of mycobacterial DnaJ proteins by overexpression and microarray profiling. Stewart GR; Robertson BD; Young DB Tuberculosis (Edinb); 2004; 84(3-4):180-7. PubMed ID: 15207487 [TBL] [Abstract][Full Text] [Related]
28. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. Zolkiewski M J Biol Chem; 1999 Oct; 274(40):28083-6. PubMed ID: 10497158 [TBL] [Abstract][Full Text] [Related]
29. The roles of the two zinc binding sites in DnaJ. Linke K; Wolfram T; Bussemer J; Jakob U J Biol Chem; 2003 Nov; 278(45):44457-66. PubMed ID: 12941935 [TBL] [Abstract][Full Text] [Related]
30. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress. Harnagel A; Lopez Quezada L; Park SW; Baranowski C; Kieser K; Jiang X; Roberts J; Vaubourgeix J; Yang A; Nelson B; Fay A; Rubin E; Ehrt S; Nathan C; Lupoli TJ Mol Microbiol; 2021 Feb; 115(2):272-289. PubMed ID: 32996193 [TBL] [Abstract][Full Text] [Related]
31. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro. Zmijewski MA; Kwiatkowska JM; Lipińska B Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982 [TBL] [Abstract][Full Text] [Related]
32. Real time kinetics of the DnaK/DnaJ/GrpE molecular chaperone machine action. Banecki B; Zylicz M J Biol Chem; 1996 Mar; 271(11):6137-43. PubMed ID: 8626401 [TBL] [Abstract][Full Text] [Related]
33. The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection. Takaya A; Tomoyasu T; Matsui H; Yamamoto T Infect Immun; 2004 Mar; 72(3):1364-73. PubMed ID: 14977940 [TBL] [Abstract][Full Text] [Related]
34. DnaJ potentiates the interaction between DnaK and alpha-helical peptides. de Crouy-Chanel A; Hodges RS; Kohiyama M; Richarme G Biochem Biophys Res Commun; 1997 Apr; 233(3):627-30. PubMed ID: 9168902 [TBL] [Abstract][Full Text] [Related]
35. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Szabo A; Langer T; Schröder H; Flanagan J; Bukau B; Hartl FU Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10345-9. PubMed ID: 7937953 [TBL] [Abstract][Full Text] [Related]
36. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. Suh WC; Lu CZ; Gross CA J Biol Chem; 1999 Oct; 274(43):30534-9. PubMed ID: 10521435 [TBL] [Abstract][Full Text] [Related]
37. Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells. Zavilgelsky GB; Kotova VY; Mazhul' MM; Manukhov IV Biochemistry (Mosc); 2002 Sep; 67(9):986-92. PubMed ID: 12387711 [TBL] [Abstract][Full Text] [Related]
38. Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA. Kim SY; Sharma S; Hoskins JR; Wickner S J Biol Chem; 2002 Nov; 277(47):44778-83. PubMed ID: 12237299 [TBL] [Abstract][Full Text] [Related]
39. ATP hydrolysis is required for the DnaJ-dependent activation of DnaK chaperone for binding to both native and denatured protein substrates. Wawrzynów A; Banecki B; Wall D; Liberek K; Georgopoulos C; Zylicz M J Biol Chem; 1995 Aug; 270(33):19307-11. PubMed ID: 7642606 [TBL] [Abstract][Full Text] [Related]
40. The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK-DnaJ-GrpE chaperone system and for cell division. Sugimoto S; Saruwatari K; Higashi C; Sonomoto K Microbiology (Reading); 2008 Jul; 154(Pt 7):1876-1885. PubMed ID: 18599817 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]