BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35412891)

  • 1. Simple, fast, and flexible framework for matrix completion with infinite width neural networks.
    Radhakrishnan A; Stefanakis G; Belkin M; Uhler C
    Proc Natl Acad Sci U S A; 2022 Apr; 119(16):e2115064119. PubMed ID: 35412891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical Note: PYRO-NN: Python reconstruction operators in neural networks.
    Syben C; Michen M; Stimpel B; Seitz S; Ploner S; Maier AK
    Med Phys; 2019 Nov; 46(11):5110-5115. PubMed ID: 31389023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From convolutional neural networks to models of higher-level cognition (and back again).
    Battleday RM; Peterson JC; Griffiths TL
    Ann N Y Acad Sci; 2021 Dec; 1505(1):55-78. PubMed ID: 33754368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CT Image Conversion among Different Reconstruction Kernels without a Sinogram by Using a Convolutional Neural Network.
    Lee SM; Lee JG; Lee G; Choe J; Do KH; Kim N; Seo JB
    Korean J Radiol; 2019 Feb; 20(2):295-303. PubMed ID: 30672169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knowledge distillation circumvents nonlinearity for optical convolutional neural networks.
    Xiang J; Colburn S; Majumdar A; Shlizerman E
    Appl Opt; 2022 Mar; 61(9):2173-2183. PubMed ID: 35333231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial neural networks and computer vision in medicine and surgery.
    Jiřík M; Moulisová V; Hlaváč M; Železný M; Liška V
    Rozhl Chir; 2022; 101(12):564-570. PubMed ID: 36759202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic Convolutional Neural Networks for RGB-D Based Semantic Scene Completion.
    Li J; Wang P; Han K; Liu Y
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):8125-8138. PubMed ID: 34003745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering image contrast in object classification deep networks.
    Akbarinia A; Gil-Rodríguez R
    Vision Res; 2020 Aug; 173():61-76. PubMed ID: 32480109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image Inpainting With Local and Global Refinement.
    Quan W; Zhang R; Zhang Y; Li Z; Wang J; Yan DM
    IEEE Trans Image Process; 2022; 31():2405-2420. PubMed ID: 35259102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the outputs of finite deep neural networks trained with noisy gradients.
    Naveh G; Ben David O; Sompolinsky H; Ringel Z
    Phys Rev E; 2021 Dec; 104(6-1):064301. PubMed ID: 35030925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AtomVision: A Machine Vision Library for Atomistic Images.
    Choudhary K; Gurunathan R; DeCost B; Biacchi A
    J Chem Inf Model; 2023 Mar; 63(6):1708-1722. PubMed ID: 36857727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deeply self-supervised contour embedded neural network applied to liver segmentation.
    Chung M; Lee J; Lee M; Lee J; Shin YG
    Comput Methods Programs Biomed; 2020 Aug; 192():105447. PubMed ID: 32203792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convolutional sparse kernel network for unsupervised medical image analysis.
    Ahn E; Kumar A; Fulham M; Feng D; Kim J
    Med Image Anal; 2019 Aug; 56():140-151. PubMed ID: 31229759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Obstacle Recognition using Computer Vision and Convolutional Neural Networks for Powered Prosthetic Leg Applications.
    Novo-Torres L; Ramirez-Paredes JP; Villarreal DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3360-3363. PubMed ID: 31946601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Matrix Factorization Based on Convolutional Neural Networks for Image Inpainting.
    Ma X; Li Z; Wang H
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GAN-Based Image Colorization for Self-Supervised Visual Feature Learning.
    Treneska S; Zdravevski E; Pires IM; Lameski P; Gievska S
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FPNA: interaction between FPGA and neural computation.
    Girau B
    Int J Neural Syst; 2000 Jun; 10(3):243-59. PubMed ID: 11011795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.