BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35412989)

  • 1. SOKS: Automatic Searching of the Optimal Kernel Shapes for Stripe-Wise Network Pruning.
    Liu G; Zhang K; Lv M
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):9912-9924. PubMed ID: 35412989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination-Aware Network Pruning for Deep Model Compression.
    Liu J; Zhuang B; Zhuang Z; Guo Y; Huang J; Zhu J; Tan M
    IEEE Trans Pattern Anal Mach Intell; 2022 Aug; 44(8):4035-4051. PubMed ID: 33755553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deepprune: Learning Efficient and Interpretable Convolutional Networks Through Weight Pruning for Predicting DNA-Protein Binding.
    Luo X; Chi W; Deng M
    Front Genet; 2019; 10():1145. PubMed ID: 31824562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A learnable Gabor Convolution kernel for vessel segmentation.
    Chen C; Zhou K; Qi S; Lu T; Xiao R
    Comput Biol Med; 2023 May; 158():106892. PubMed ID: 37028143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation.
    Sui X; Lv Q; Zhi L; Zhu B; Yang Y; Zhang Y; Tan Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the shape of convolution kernels in MRI reconstruction: Rectangles versus ellipsoids.
    Lobos RA; Haldar JP
    Magn Reson Med; 2022 Jun; 87(6):2989-2996. PubMed ID: 35212009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weak sub-network pruning for strong and efficient neural networks.
    Guo Q; Wu XJ; Kittler J; Feng Z
    Neural Netw; 2021 Dec; 144():614-626. PubMed ID: 34653719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Where to Prune: Using LSTM to Guide Data-Dependent Soft Pruning.
    Ding G; Zhang S; Jia Z; Zhong J; Han J
    IEEE Trans Image Process; 2021; 30():293-304. PubMed ID: 33186105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LAP: Latency-aware automated pruning with dynamic-based filter selection.
    Chen Z; Liu C; Yang W; Li K; Li K
    Neural Netw; 2022 Aug; 152():407-418. PubMed ID: 35609502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filter pruning for convolutional neural networks in semantic image segmentation.
    López-González CI; Gascó E; Barrientos-Espillco F; Besada-Portas E; Pajares G
    Neural Netw; 2024 Jan; 169():713-732. PubMed ID: 37976595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kernel-wise difference minimization for convolutional neural network compression in metaverse.
    Chang YT
    Front Big Data; 2023; 6():1200382. PubMed ID: 37600500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ARPruning: An automatic channel pruning based on attention map ranking.
    Yuan T; Li Z; Liu B; Tang Y; Liu Y
    Neural Netw; 2024 Jun; 174():106220. PubMed ID: 38447427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1xN Pattern for Pruning Convolutional Neural Networks.
    Lin M; Zhang Y; Li Y; Chen B; Chao F; Wang M; Li S; Tian Y; Ji R
    IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):3999-4008. PubMed ID: 35917571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. StructADMM: Achieving Ultrahigh Efficiency in Structured Pruning for DNNs.
    Zhang T; Ye S; Feng X; Ma X; Zhang K; Li Z; Tang J; Liu S; Lin X; Liu Y; Fardad M; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2259-2273. PubMed ID: 33587706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards performance-maximizing neural network pruning via global channel attention.
    Wang Y; Guo S; Guo J; Zhang J; Zhang W; Yan C; Zhang Y
    Neural Netw; 2024 Mar; 171():104-113. PubMed ID: 38091754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical Conventional Neural Network Channel Pruning by Genetic Wavelet Channel Search for Image Classification.
    Chen L; Gong S; Shi X; Shang M
    Front Comput Neurosci; 2021; 15():760554. PubMed ID: 34776916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating Identical Filter Redundancy for Efficient Pruning on Deep and Complicated CNN.
    Hao T; Ding X; Han J; Guo Y; Ding G
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37824319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adding Before Pruning: Sparse Filter Fusion for Deep Convolutional Neural Networks via Auxiliary Attention.
    Tian G; Sun Y; Liu Y; Zeng X; Wang M; Liu Y; Zhang J; Chen J
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; PP():. PubMed ID: 34487502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Compression of Convolutional Neural Networks with Applications in Interpretability.
    Abbasi-Asl R; Yu B
    Front Big Data; 2021; 4():704182. PubMed ID: 34514381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redundant feature pruning for accelerated inference in deep neural networks.
    Ayinde BO; Inanc T; Zurada JM
    Neural Netw; 2019 Oct; 118():148-158. PubMed ID: 31279285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.