These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35412989)

  • 21. DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator Search.
    Guan Y; Liu N; Zhao P; Che Z; Bian K; Wang Y; Tang J
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):9847-9858. PubMed ID: 35380974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heuristic Method for Minimizing Model Size of CNN by Combining Multiple Pruning Techniques.
    Tian D; Yamagiwa S; Wada K
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyper-convolutions via implicit kernels for medical image analysis.
    Ma T; Wang AQ; Dalca AV; Sabuncu MR
    Med Image Anal; 2023 May; 86():102796. PubMed ID: 36948069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GMConv: Modulating Effective Receptive Fields for Convolutional Kernels.
    Chen Q; Li C; Ning J; Lin S; He K
    IEEE Trans Neural Netw Learn Syst; 2024 May; PP():. PubMed ID: 38776207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamically Optimizing Network Structure Based on Synaptic Pruning in the Brain.
    Zhao F; Zeng Y
    Front Syst Neurosci; 2021; 15():620558. PubMed ID: 34177473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anisotropic Convolutional Neural Networks for RGB-D Based Semantic Scene Completion.
    Li J; Wang P; Han K; Liu Y
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):8125-8138. PubMed ID: 34003745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Mixed Visual Encoding Model Based on the Larger-Scale Receptive Field for Human Brain Activity.
    Ma S; Wang L; Chen P; Qin R; Hou L; Yan B
    Brain Sci; 2022 Nov; 12(12):. PubMed ID: 36552093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PCA driven mixed filter pruning for efficient convNets.
    Ahmed W; Ansari S; Hanif M; Khalil A
    PLoS One; 2022; 17(1):e0262386. PubMed ID: 35073373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Network Pruning Using Adaptive Exemplar Filters.
    Lin M; Ji R; Li S; Wang Y; Wu Y; Huang F; Ye Q
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7357-7366. PubMed ID: 34101606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-grouping convolutional neural networks.
    Guo Q; Wu XJ; Kittler J; Feng Z
    Neural Netw; 2020 Dec; 132():491-505. PubMed ID: 33039787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Joint design and compression of convolutional neural networks as a Bi-level optimization problem.
    Louati H; Bechikh S; Louati A; Aldaej A; Said LB
    Neural Comput Appl; 2022; 34(17):15007-15029. PubMed ID: 35599971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward Compact ConvNets via Structure-Sparsity Regularized Filter Pruning.
    Lin S; Ji R; Li Y; Deng C; Li X
    IEEE Trans Neural Netw Learn Syst; 2020 Feb; 31(2):574-588. PubMed ID: 30990448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient Layer Compression Without Pruning.
    Wu J; Zhu D; Fang L; Deng Y; Zhong Z
    IEEE Trans Image Process; 2023; 32():4689-4700. PubMed ID: 37561618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accelerating Convolutional Neural Networks by Removing Interspatial and Interkernel Redundancies.
    Zeng L; Tian X
    IEEE Trans Cybern; 2020 Feb; 50(2):452-464. PubMed ID: 30346299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feature flow regularization: Improving structured sparsity in deep neural networks.
    Wu Y; Lan Y; Zhang L; Xiang Y
    Neural Netw; 2023 Apr; 161():598-613. PubMed ID: 36822145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implementation of Lightweight Convolutional Neural Networks via Layer-Wise Differentiable Compression.
    Diao H; Hao Y; Xu S; Li G
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Hyperspectral Image Classification Method Based on the Nonlocal Attention Mechanism of a Multiscale Convolutional Neural Network.
    Li M; Lu Y; Cao S; Wang X; Xie S
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interpretability and Optimisation of Convolutional Neural Networks Based on Sinc-Convolution.
    Habib A; Karmakar C; Yearwood J
    IEEE J Biomed Health Inform; 2023 Apr; 27(4):1758-1769. PubMed ID: 35749338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DualConv: Dual Convolutional Kernels for Lightweight Deep Neural Networks.
    Zhong J; Chen J; Mian A
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):9528-9535. PubMed ID: 35230955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Representations of regular and irregular shapes by deep Convolutional Neural Networks, monkey inferotemporal neurons and human judgments.
    Kalfas I; Vinken K; Vogels R
    PLoS Comput Biol; 2018 Oct; 14(10):e1006557. PubMed ID: 30365485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.